Studies of the response of a BaF2 calorimeter

Iryna Chaikovska LAL, Orsay

- Geant4 simulation
- Optical photons generation
- Timing
- Electronics response

Motivation

- to understand the physics inside the calorimeter
- to have an idea about timing of optical photons in the scintillator
- to estimate the time and energy resolution of the scintillator

•

To do this we use Geant4 toolkit

(v4.9.4.b01)

Detector model

Geometry:

- One piece of 200mm x 70mm x 70 mm (the optical surface between two pieces should be added)
- All surfaces are polished;
- Wrapping: absorbing teflon;
- UV filter (should be implemented soon);

Vertices of the gamma interaction inside the scintillator

Vertices of the gamma interaction inside the scintillator

Emission spectrum of optical photons produced in BaF₂

Egamma = 20 MeV

Statistics 1000 events

Location where the optical photons are produced inside the scintillator

The optical photons contribution to the signal at the PMT is uniform in z (along the crystal)

Optical photons at the PMT

The optical photons hit the PMT uniformly.

Calorimeter's time response

Detection process

- Gammas absorption and light emission
- Light collection at the photocathode
- Production of photoelectrons
- Collection of photoelectrons
- Multiplication by PMT dynodes
- Electronics

Time resolution

- Intrinsic resolution of the crystal (scintillation emission time)
- Transfer resolution (light propagation time in scintillator)
- PMT contribution (transit time of single photoelectron)

• PMT simulation is still to be done

$$t_{pe} = t_{emit} + t_{pro} + t_{PMT}$$

Timing of optical photons

Propagation time

Time of arrival at the PMT

The contribution of the propagation time to the signal duration is about I ns. The total signal duration (including t_{prop} and t_{emit}) at the exit of the crystal is approximately 2 ns.

Simulation for DAQ system

We develop a matlab simulation to understand

- effect of the optical filter
- PMT response (rough)
 Voltage divider to be done!
- limited ADC resolution
- time sampling
- bandwidth

Signal Model

$$S_s(t) = \frac{A_s}{2\tau_s} e^{\frac{\sigma^2}{2\tau_s^2} - \frac{t - t_0}{\tau_s}} \operatorname{erfc}\left(\frac{\sigma}{\sqrt{2}\tau_s} - \frac{t - t_0}{\sqrt{2}\sigma}\right)$$

$$S_f(t) = \frac{A_f}{2\tau_f} e^{\frac{\sigma^2}{2\tau_f^2} - \frac{t - t_0}{\tau_f}} \operatorname{erfc} \left(\frac{\sigma}{\sqrt{2}\tau_f} - \frac{t - t_0}{\sqrt{2}\sigma} \right)$$

$$S(t) = S_f(t) + S_s(t)$$

A _f	0.18
As	0.82
T_f	0.8 ns
T_s	630 ns
σ	0.4 ns
t ₀	5 ns

 $A_f, A_s,\,$ - relative light yields ;

 au_S, au_f - the decay constants of the light;

 σ - variance of the Gaussian response of the PMT to a light pulse;

 t_0 - starting point of the time interval;

$$S_{RC} = \frac{A_r}{\theta} e^{-\frac{t-t0}{\theta}} \operatorname{erfc} \left(\frac{\sigma}{\sqrt{2}\theta} - \frac{t-t0}{\sqrt{2}\sigma} \right) \longrightarrow \text{response of RC (voltage divider) circuit should be understood}$$

One train of 10 bunches

w/o UV-filter

60

t [ns]

80

with UV-filter

Iryna Chaikovska LAL

100

20

40

 $12 \frac{x}{10^7}$

10

8

6

4

2

Intensity

Effect of bandwidth limitation

x 10⁻⁷

ıт

Time (s)

Scope: 500 MHz RF Amp: DC-150 MHz

Cables specifications???

ADC

Effect of sampling rate

0.5 Gs/s

2 Gs/s

Iryna Chaikovska LAL

Limited ADC resolution (4GS/s with 8bits ADC)

Trade-off between max dynamic range & resolution

Summary

At present, we are working to understand the calorimeter

We are specifying a fast DAQ system to acquire the Compton signal.

Next plan: study the PMT response to the signal from the crystal.