How to "see" the protons in the LHC? (or the electrons in the ILC)

+

What to do with a particle accelerator? (apart from particle physics)

Nicolas Delerue

LAL (CNRS and Université de Paris-Sud)

Lectures overview

- I. How to produce protons for the LHC?
- II. How to get protons in the LHC?
- III. (a) Beam-beam effects
 - (b) How to "see" protons in the LHC?
 - Beam-matter interaction
 - Radiation emitted by the beam
 - (c) What can you do with a particle accelerator (apart from hunting the Higgs)?

Answers to the questions asked

- Septum:
 - A septum is a kind of « half magnet ». To inject/extract a beam you need both a septum and a kicker.
- Longitudinal and transverse focussing:

 The transverse size is determined by the quadrupole magnets. The longitudinal size is mostly determined by the RF frequency (more later today).
- Feel free to ask me at the breaks or to email me: delerue@lal.in2p3.fr

Where are we?

- We have seen how to produce particles.
- We also learnt how to accelerate them and how to control them.
- We are aware that some effects such as wakefield, electron cloud, scattering can limit the beam lifetime or performances...
- Today we will learn how to "look" at the beam in the accelerators and what to do with a particle accelerator.

BEAM DYNAMICS (CONTINUED)

Electron cloud effect

- Radiation from a bunch can extract electrons (and ions) from the beam pipe and from residual gas in the vacuum.
- These electrons fall back and get re-absorbed with a certain time constant.
- However if the bunch frequency is too high these electrons (and ions) will accumulate in the beam pipe and shield the beam from the magnetic elements.
- Special coatings, beam pipe geometries and bunch repetition patterns can mitigate this problem to some extent.
- This is one of the main limitations to increasing the

some issues in LHC 2011-12 operation

Beam induced heating

- Local non-conformities (design, installation)
 - injection protection devices
 - sync. Light mirrors
 - vacuum assemblies

Nicolas Delerue, LAL Orsay

UFOs

- 20 dumps in 2012
- time scale 50-200 μs
- conditioning observed
- worry about 6.5 TeV and 25 ns spacing

SHEP 2014 - Particle accelerators

Diagnostics and applications

Radiation to electronics

- concerted program of mitigation measures (shielding, relocation...)
- premature dump rate down from

12/fb⁻¹ in 2011 to 3/fb⁻¹ in 2012

Courtesy of F. Zimmerman

/

BEAM-BEAM EFFECTS

Beam beam effect

Courtesy of N. Solyak

- In a collider the two beams feel each other's electric field well before and well after colliding.
- Given that the particles come very close to each other, this lead to very intense forces.
- If the self focussing is too strong this can lead to a large emittance growth.
- If the two beam are not perfectly aligned this will also lead to large transverse deflection.
- This is a strong limitation on the size of the beams and therefore the luminosity, especially in a ring.

ATLAS

Luminosity

More luminosity, => more collisions per turn => pile-up.

Not everybody want more instantaneous luminosity. Eg: LHCb

Operational cycle at LHC

Turn around 2 to 3 hours on a good day

DIAGNOSTICS

What do <u>we</u> want to know about the beam?

What do you want to know about the beam?

- Intensity (charge) (I,Q)
- Position (x,y,z)
- Size/shape (transverse and longitudinal)
- Emittance (transverse and longitudinal)
- Energy
- Particle losses

Beam properties measurements

- Almost all accelerators accelerate charged particles
- There are mainly 2 types of beam diagnostics:
 - Diagnostics that use the interaction of the beam with matter (see Alexandre's lecture).
 - Diagnostics that use radiations emitted by the beam to measure its properties (see your favorite EM course).
- That's almost all what you need to use to build diagnostics (together with some clever tricks).

Particles interactions with matter

Massive shower in a tungsten cylinder (outlined in green) produced by a single 10 GeV incident electron.

1 electron producing 3 bremsstrahlung photons

- High energy particles interact with matter in several ways.
- When a particle enters (nuclear) matter, it loses energy.
- It will scatter off the nuclei that form the nuclear matter.
- Particles produced when such scattering occur will carry a significant energy and scatter

Faraday cup

- Let's send the beam on a piece of copper.
- By inserting an ammeter between the copper and the ground it is possible to measure the total charge of the beam.
- At high energy Faraday cups can be large:

More than 1m at SOLEIL for a 3 GeV electron beam.

Screen (1)

- If a thin screen is inserted in the path of the particles, they will deposit energy in the screen.
- If this screen contains
 elements that emit light when
 energy is deposited then the
 screen will emit light.
- Example of such elements;
 Phosphorus, Gadolinium,
 Cesium,...

Screen (2)

- It is not possible for the operators to stay in the accelerator while the beam is on so the screen must be monitored by a camera.
- To avoid damaging the camera the screen is at 45 degrees.
- On this screen you can see the beam shape.

Wire-scanner

- By inserting a thin wire in the beam trajectory (instead of a full screen) it is possible to sample parts of the beam.
- By moving the wire in the transverse direction one can get a profile of the beam.
- It is possible to use wire diameters of just a few micrometres.
 - => better resolution than with screens & less disruptive
- However, a too strong beam current can lead to damages to the wire (requiring replacement of the wire).

Longitudinal properties

- It is not possible to directly image the longitudinal profile of a bunch.
- By giving longitudinal impulsion to the beam it is possible to make it rotate and observe its longitudinal profile.

RF deflector off and on

Limitation of these monitors

- Monitors in which the matter interacts are prone to damage.
- With high energy high intensity colliders such damages are more likely to occur.
- To the left: hole punched by a 30 GeV beam into a scintillating screen.

Summary (particles interaction with matter)

	Interaction with matter	
C harge	Faraday cup	
Position	Screen	
Size or shape	S creen or wire-	
(trans v.)	scanner/LW	
Siza or chana	P.E. cavity	
Size or shape	RF cavity +	
(longit)	screen	
	The transfer	
Energy	555	
Losses	Scintillator	

- We have seen that it is possible to build monitors which use the interactions of particles with matter.
- These monitors tend to be destructive: they significantly damage/modify the beam.
- These monitors tend to be simple but can be damaged by high energy and/or high intensity beams.

Charged particle

- Any charged particle "radiates"
- These electromagnetic radiations can be detected without disrupting the beam.
- One needs to remember that the beam travels at high speed: the radiations will be contained in a 1/gamma cone.

Beam current monitor

- Remember: as the charge travelling in the beam pipe is constant the current induced on the walls (of the beam pipe) will be independent of the beam position.
- By inserting a ceramic gap and an ammeter the total charge travelling in a beam pipe can be measured.

Beam current monitor vs Faraday cup

- Both devices have pros and cons.
- A Faraday cup destroys the beam but it gives a very accurate charge measurements
- A Beam current monitor does not affect the beam but must be calibrated.
- Both tend to be used but at different locations along the accelerator.

Beam position monitor

- If instead of measuring the charge all around the beam pipe, two electrodes are positioned at opposite locations, they will be sensitive to the beam position.
- Here the electrodes act as antennas.
- Such device is called a beam position monitor.
- Many flavours of BPM exist.

Synchrotron radiation

- Synchrotron radiation carries information about the beam which emitted it.
- It is commonly used to study the beam transverse profile.

Optical Transition Radiation

- When a charged particle experiences a transition between two different media continuity equations require some EM signal to be emitted.
- This radiation can be observed by using a 45 degrees screen.
- By imaging the radiation emitted from the screen it is possible to know the beam transverse shape (and possibly other things).
- As this is a surface effect, very thin (non disruptive) screens can be used.

Longitudinal profiles

- Longitudinal profiles of short beams are one of the most difficult measurement.
- Several techniques use radiation induced by the beam.
- In the Smith-Purcell method a grating is used and the beam interacts coherently with the grating and emits radiation.
- Most longitudinal profile measurement techniques actually measure the Fourier transform of the beam

=> reconstruction needed!

$$\left(\frac{dI}{d\Omega d\omega}\right)_{N_e} (\Omega, \omega) = \left(\frac{dI}{d\Omega d\omega}\right)_{sp} (\Omega, \omega) \cdot \left[N_e + N_e(N_e - 1) |F(\omega)|^2\right]$$

Energy measurements

- To measure (or select) the energy of the particles a bending magnet is often the best solution.
- This can be done in an "energy chicane".

Diagnostics overview

	Interaction with matter	Radiation
Charge	Faraday cup	Beam current monitor
Position	Screen	BPM
Size or shape (transverse)	Screen or wire-scanner	Synchrotron radiation or optical transition radiation
Size or shape (longitudinal)	RF cavity + screen	Radiation detectors (eg: Smith-Purcell)
Energy		Bending magnet
Losses	Scintillator	

Machine protection system

- The LHC beams carry the same amount of energy than a jumbo plane at take-off => risk of serious damages!
- A complex "machine protection system" is used to monitor the machine at all time and prevent injection or dump the beam if a fault is detected.

 A system of flags and permits is used to prevent any situation that might led to significant damages
 in case of doubt it is safer not to inject/keep the

beam!

Quench

- Unfortunately a large quench occurred in September 2008.
- This was due to the resistance of a bus bar (connector) being a few <u>nano-ohms</u> too high.

Diagnostics summary

- The properties of a particle beam can be measured, either:
 - through its interactions with matter (destructive measurement)
 - or by detecting the radiation measurements (almost non perturbative measurement)
- The more accurate the measurement has to be the more precise/expensive the measuring equipment will be.
- At the LHC the diagnostics are the "eyes" of the system and some are part of the machine protection.

APPLICATIONS

Quizz

- In how many Ukrainian cities is there a particle accelerator?
- (a) 1-2
- (b) Between 3 and 5
- (c) Between 6 and 8
- (d) More than 8

Non HEP applications Dating old artefacts

- Radiocarbon dating is allows to measure the age of ancient artefacts.
- The ratio C13 vs C14 can be measured by using an accelerator.
- This technique is called "Accelerator Mass spectroscopy".

Accelerator Mass Spectroscopy (1)

- In an AMS device the C12, C13 and C14 beams need to be separated to allow an accurate counting.
- An energy of 10-15MV is sufficient.
- Beam stability is very important to ensure good accuracy.
- What type of source would you recommend?
- What type of accelerator?
 RF or electrostatic?
- Does the emittance matter?
- How would you count the charge of the ion beams with a good accuracy?

Accelerator Mass Spectroscopy (2)

- AMS machines use a sputtering ion source producing C- ions.
- A tandem Van de Graff is then used to accelerate the ions and strip then to C³⁺.
- A DC accelerator offer a better stability than a RF accelerator.
- A Faraday cup is used to measure the beam charge.

Example of AMS application Vinland map

- AMS was used to date ashes found in Newfoundland in a European-type settlement.
 These ashes were dated back to the XIth century.
- A viking map featuring
 Newfoundland was shown to be older than Columbus trip to America.
- AMS has contributed to establish that North America was visited by Vikings well before other European nations.

Treating Cancer

- Some type of cancer tumors are located at places difficult to reach by Surgery.
 - => X-rays
- Radiotherapy need 10-15 MeV electrons for a few seconds.
- It is safer to produce a low current over several pulses rather than a high peak current over a few pulses, hence a thermionic gun is used (such gun are also more reliable and easier to maintain).
- A short RF accelerator is used to reach the required energy.

Treating Cancer

- Some type of cancer tumors are located at places difficult to reach by Surgery.
- X-rays can be used to kill such tumors.
- This is called Radiotherapy.
- Radiotherapy need 10-15 MeV electrons for a few seconds.
- The accelerator needs to be compact so that it fits in an hospital room and fields can be contained.
- What type of cathode do suggest to use? Thermionic or Photocathode?
- What type of accelerators do suggest to use?

Medical linac

- Radiation therapy uses small 15MeV "linacs".
- It is safer to produce a low current over several pulses rather than a high peak current over a few pulses, hence a thermionic gun is used (such gun are also more reliable and easier to maintain).
- To reach 15 MeV with a large electrostatic accelerator would require a large installation likely to frighten the patients.
- A short RF accelerator is used to reach the required energy.

Radiotherapy

100
90
80
70
6 MV photons, 10 cm square
— 6 MV photons, 20 cm square
— 15 MV photons, 10 cm square
— 15 MV photons, 20 cm square
— 15 MV photons, 20 cm square

50
40
30
0 10 20 30 40 50
Depth (mm)

- X-rays are used to kill a tumour.
- To minimize the dose sent on healthy tissues several X-ray beams are sent in turn from different directions.
- However this technique is not ideal due to its impact on healthy tissues.

What gun and what machine shall we use for proton and ion therapy?

A possible solution...

Medical cyclotron

- Cyclotron are well suited to accelerate ions.
- Several hospitals or universities are equipped with cyclotrons to produce radioactive isotopes used as markers in drugs.
- Such cyclotron is a commercial product.

A source of intense X-rays

- Synchrotrons are best suited to deliver intense beams of X-rays.
- Although synchrotrons operate at ultra low emittance the gun can be thermionic as radiation damping reduces the transverse emittance.
- A RF accelerator is then used to accelerate the particles up to the ring energy. A booster may be used to reduce the length of the linac.

Source: Diamond

Source: SOLEIL

Pharmaceutical drugs

- To be efficient a drug need to target the correct molecule.
- This can only be achieved by studying the diffraction of intense on the molecule.
- Synchrotron are very well suited for this.

Applications of synchrotrons

- Light sources have a wide range of applications.
- A light source in England has been used to improve the quality of chocolate!
- Diamond is being used to study old manuscripts too precious to be opened!
- Protein imaging, drugs, material studies,...
- GMR (the phenomena that allows dense magnetic storage in your ipod) has been studied with light sources.

The next generation of light sources

- The drawback of using radiation damping to reach ultra-low emittance is that the beam is stretched longitudinally.
- This means that the X-ray pulse have a long (ps) duration.
- Some applications require fs long high brightness Xray pulses...
 - => Linac-based free electron lasers delivering fslong X-ray pulses.

Next generation: Linac based Free electron lasers

- Only linac based accelerators can deliver ultra-short pulses.
- Ultra-short pulses are necessary to get coherent emission of X-rays.
- Hence the emittance must be ultra-low from the start.
- This requires a photocathode RF gun.
- With an ultra-low emittance it is possible to achieve lasing in the undulators (and thus an even higher light output).

How to make short bunches?

- RF guns can be used to make short pulses.
- To have even shorter pulses one needs to use a compression scheme.

Spallation

- Spallation is a process in which fragments (protons, neutrons,...) are ejected from a target atom hit by a high energy proton.
- Such target is very challenging as most of the proton power is deposited in the target.
- However this is the best way to produce pulsed neutrons
 applications to study materials (H,...)

Spallation target

Accelerator Driven sub-critical reactor (ADSR)

- An intense source of protons could be used to produce an intense flux of neutrons.
- After moderation these neutrons would trigger nuclear reactions in some nuclear material.
- Advantage the reactor can operate in sub-critical mode (if the accelerator stops the nuclear reactions die automatically).
- The nuclear fuel could be made of isotopes that can not sustain a chain reaction (such as Thorium).
 - => less risk of proliferation.

(233U → Fission Fragments)

Need for high redundancy

- Even if they do not like it, HEP experiments can cope with an unreliable accelerator.
- In a nuclear reactor a sudden stop of the driver will cause a thermal shock.
- To many thermal shocks might damage the containment vessel
 => The accelerator has to have a high level of reliability.

... and much more

- There are many more applications to accelerators.
- Although HEP is driving the progress other communities have now their types of accelerators.
- As new generations are built, new potentials and new possibilities are discovered.

Ultra compact sources: Laser-driven plasma acceleration (1)

- An intense laser pulse shot in a plasma can accelerate electrons to very high energy: 1GeV over 33mm
- Such electron source could produce high energy low emittance electron beam over very short distances.
- This could be used to drive a compact FEL.
- Recently SLAC achieved significant (>>GeV) energy gain using this technique (stay tuned!)

Ultra compact sources: Laser-driven plasma acceleration (2)

- If a similar laser is shot onto a target, medium energy ions can be produced.
- This could be used for ion therapy.

ThomX

• ThomX is an accelerator being built at Orsay

Progress of accelerators

- Accelerators have made tremendous progress over the past 50 years.
- They drove part of the developments of HEP.
- However they have also become very large and expensive.

Summary

- Particles accelerators use principles for several fields of physics to accelerate beams of particles.
- The more challenging the requirements of the users are, the more complex phenomena will appear: You can build a very crude accelerator in a University lab in a few days...
 - but it took several years to build the LHC!
- Accelerators have a wide range of applications across many scientific fields reaching all the way to archaeology...
- If you have any questions on my lectures but are too shy to ask, feel free to ask me at the coffee break, the meals or to email me delerue@lal.in2p3.fr

TESHEP 2014 - Particle accelerators
Diagnostics and applications

Recommended reading

- « Accelerators for pedestrians » CERN-AB-Note-2007-014
 Available for free online at http://cdsweb.cern.ch/record/1017689
- An introduction to particle accelerators, Edmund Wilson
- The physics of Particle accelerators, Klaus Wille

If you want to learn much more:

- Handbook of Accelerator Physics and Engineering,
 by Alex Chao and Maury Tigner ISBN-10: 9810235003
- Charged Particle Beams, by Stanley Humphries http://www.fieldp.com/cpb/cpb.html
- Principles of Charged Particle Acceleration by Stanley Humphries,
 http://www.fieldp.com/cpa/cpa.html