## Antimatter and applications of particle accelerators

Nicolas Delerue

LAL (CNRS and Université Paris-Sud)



#### **ANTIPARTICLES SOURCES**

#### Question

- How can positrons be produced?
- How can antiprotons be produced?



#### Positron sources

- Electron-Positrons pairs can be produced by high energy (>2xMe) photons.
- These photons can be produced by bremstrahlung of high energy electrons in a target.
- More advanced techniques are being investigated to produce polarised pairs of electron-positrons.







Particle sources

#### Anti-proton sources

- The creation of antiprotons is similar to that of positrons but at higher energy (>2Mp).
- Typical targets use copper or iridium.
- Anti-protons production is very inefficient so fermilab had built a special ring to "recycle" its anti-protons.
- Big careful to power deposited on target!



**CERN** antiproton target

## Anti-electrons vs anti-protons production cross section

- The cross section
   gamma -> e+ + e is much larger than
   gamma -> proton + antiproton
- So it is much more efficient to produce antielectrons than anti-protons...

#### Anti-particles capture

- After the target the anti-particles are emitted from the target with a very large spread.
- They need to be captured by special sections.
- They also need to be "cooled" (for example by radiation damping)
- The whole chain: target/capture/cooling tends to have a low efficiency. That is why in particle vs anti-particles colliders the anti-particles bunches tend to have a lower charge.



#### Quizz

Why does the LHC not use anti-protons as did

the TeVatron?



#### Answer

Producing anti-protons is very inefficient.

QCD tells us that protons at high energy also

contain anti-quarks.





#### **APPLICATIONS**

# Non HEP applications Dating old artefacts



- Radiocarbon dating is allows to measure the age of ancient artefacts.
- The ratio C13 vs C14 can be measured by using an accelerator.
- This technique is called "Accelerator Mass spectroscopy".



#### Accelerator Mass Spectroscopy (1)



- In an AMS device the C12, C13 and C14 beams need to be separated to allow an accurate counting.
- An energy of 10-15MV is sufficient.
- Beam stability is very important to ensure good accuracy.
- What type of source would you recommend?
- What type of accelerator?
   RF or electrostatic?
- Does the emittance matter?
- How would you count the charge of the ion beams with a good accuracy?

#### Accelerator Mass Spectroscopy (2)





- AMS machines use a sputtering ion source producing C- ions.
- A tandem Van de Graff is then used to accelerate the ions and strip then to C<sup>3+</sup>.
- A DC accelerator offer a better stability than a RF accelerator.
- A Faraday cup is used to measure the beam charge.

## Example of AMS application Vinland map



- AMS was used to date ashes found in Newfoundland in a European-type settlement.
   These ashes were dated back to the XIth century.
- A viking map featuring
   Newfoundland was shown to be older than Columbus trip to America.
- AMS has contributed to establish that North America was visited by Vikings well before other European nations.

## Treating Cancer





- Some type of cancer tumors are located at places difficult to reach by Surgery.
  - => X-rays
- Radiotherapy need 10-15 MeV electrons for a few seconds.
- It is safer to produce a low current over several pulses rather than a high peak current over a few pulses, hence a thermionic gun is used (such gun are also more reliable and easier to maintain).
- A short RF accelerator is used to reach the required energy.

## Treating Cancer



- Some type of cancer tumors are located at places difficult to reach by Surgery.
- X-rays can be used to kill such tumors.
- This is called Radiotherapy.
- Radiotherapy need 10-15 MeV electrons for a few seconds.
- The accelerator needs to be compact so that it fits in an hospital room and fields can be contained.
- What type of cathode do suggest to use? Thermionic or Photocathode?
- What type of accelerators do suggest to use?

#### Medical linac

- Radiation therapy uses small 15MeV "linacs".
- It is safer to produce a low current over several pulses rather than a high peak current over a few pulses, hence a thermionic gun is used (such gun are also more reliable and easier to maintain).
- To reach 15 MeV with a large electrostatic accelerator would require a large installation likely to frighten the patients.
- A short RF accelerator is used to reach the required energy.



### Radiotherapy



90
80
70
6 MV photons, 10 cm square
6 MV photons, 20 cm square
- 15 MV photons, 10 cm square
- 15 MV photons, 10 cm square
- 15 MV photons, 20 cm square

- X-rays are used to kill a tumour.
- To minimize the dose sent on healthy tissues several X-ray beams are sent in turn from different directions.
- However this technique is not ideal due to its impact on healthy tissues.



What gun and what machine shall we use for proton and ion therapy?

## A possible solution...



#### Medical cyclotron

- Cyclotron are well suited to accelerate ions.
- Several hospitals or universities are equipped with cyclotrons to produce radioactive isotopes used as markers in drugs.
- Such cyclotron is a commercial product.





#### A source of intense X-rays

- Synchrotrons are best suited to deliver intense beams of X-rays.
- Although synchrotrons operate at ultra low emittance the gun can be thermionic as radiation damping reduces the transverse emittance.
- A RF accelerator is then used to accelerate the particles up to the ring energy. A booster may be used to reduce the length of the linac.



Source: Diamond



Source: SOLEIL

## Pharmaceutical drugs



- To be efficient a drug need to target the correct molecule.
- This can only be achieved by studying the diffraction of intense on the molecule.
- Synchrotron are very well suited for this.

### Applications of synchrotrons

- Light sources have a wide range of applications.
- A light source in England has been used to improve the quality of chocolate!
- Diamond is being used to study old manuscripts too precious to be opened!
- Protein imaging, drugs, material studies,...
- GMR (the phenomena that allows dense magnetic storage in your ipod) has been studied with light sources.





#### The next generation of light sources

- The drawback of using radiation damping to reach ultra-low emittance is that the beam is stretched longitudinally.
- This means that the X-ray pulse have a long (ps) duration.
- Some applications require fs long high brightness Xray pulses...
  - => Linac-based free electron lasers delivering fslong X-ray pulses.





## Next generation: Linac based Free electron lasers

- Only linac based accelerators can deliver ultra-short pulses.
- Ultra-short pulses are necessary to get coherent emission of X-rays.
- Hence the emittance must be ultra-low from the start.
- This requires a photocathode RF gun.
- With an ultra-low emittance it is possible to achieve lasing in the undulators (and thus an even higher light output).



#### How to make short bunches?

- RF guns can be used to make short pulses.
- To have even shorter pulses one needs to use a compression scheme.



## Spallation

- Spallation is a process in which fragments (protons, neutrons,...) are ejected from a target atom hit by a high energy proton.
- Such target is very challenging as most of the proton power is deposited in the target.



## Spallation target



## Accelerator Driven sub-critical reactor (ADSR)

- An intense source of protons could be used to produce an intense flux of neutrons.
- After moderation these neutrons would trigger nuclear reactions in some nuclear material.
- Advantage the reactor can operate in sub-critical mode (if the accelerator stops the nuclear reactions die automatically).
- The nuclear fuel could be made of isotopes that can not sustain a chain reaction (such as Thorium).
  - => no risk of proliferation.



#### Need for high redundancy

- Even if they do not like it, HEP experiments can cope with an unreliable accelerator.
- In a nuclear reactor a sudden stop of the driver will cause a thermal shock.
- To many thermal shocks might damage the containment vessel
   => The accelerator has to have a high level of reliability.



#### ... and much more



- There are many more applications to accelerators.
- Although HEP is driving the progress other communities have now their types of accelerators.
- As new generations are built, new potentials and new possibilities are discovered.

### Ultra compact sources: Laser-driven plasma acceleration (1)





- An intense laser pulse shot in a plasma can accelerate electrons to very high energy: 1GeV over 33mm
- Such electron source could produce high energy low emittance electron beam over very short distances.
- This could be used to drive a compact FEL.
- Two weeks ago SLAC
   achieved significant (>>GeV)
   energy gain using this
   technique (stay tuned!)

### Ultra compact sources: Laser-driven plasma acceleration (2)



- If a similar laser is shot onto a target, medium energy ions can be produced.
- This could be used for ion therapy.

#### ThomX



• Thom X is an accelerator being built at Orsay



#### Progress of accelerators



- Accelerators have made tremendous progress over the past 50 years.
- They drove part of the developments of HEP.
- However they have also become very large and expensive.

#### Summary

- Particles accelerators use principles for several fields of physics to accelerate beams of particles.
- The more challenging the requirements of the users are, the more complex phenomena will appear: You can build a very crude accelerator in a University lab in a few days... but it took several years to build the LHC!
- Accelerators have a wide range of applications across many scientific fields reaching all the way to archaeology...











#### Recommended reading

- « Accelerators for pedestrians » CERN-AB-Note-2007-014
   Available for free online at http://cdsweb.cern.ch/record/1017689
- An introduction to particle accelerators, Edmund Wilson
- The physics of Particle accelerators, Klaus Wille

#### If you want to learn much more:

- Handbook of Accelerator Physics and Engineering,
   by Alex Chao and Maury Tigner ISBN-10: 9810235003
- Charged Particle Beams, by Stanley Humphries http://www.fieldp.com/cpb/cpb.html
- Principles of Charged Particle Acceleration by Stanley Humphries,
   http://www.fieldp.com/cpa/cpa.html