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I. Charged particle in electromagnetic field 

Around Lorentz equation :  

II. Guided and focalization magnets  : dipoles, quadrupoles, multi-poles 

III. General development of magnetic field around the reference trajectory: 

 The magnetic field equation : 

IV. Particles motion around the reference trajectory : 

V. Beam envelop and emittance 
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 Einstein's mass-energy : 𝐸0 = 𝑚0 × 𝑐2,  

with particle mass 𝑚0, speed light 𝑐 = 2.9979 × 108 𝑚/𝑠 

511keV for e-, 938.3MeV for protons … 

See : http://www.nndc.bnl.gov/masses/mass.mas03 

 Total energy : 𝐸𝑡𝑜𝑡 = 𝛾 𝑚0 × 𝑐2, with 𝛾 =
𝐸𝑡𝑜𝑡

𝐸0
=

𝑚

𝑚0
=

1

1−𝛽2
 and 𝛽 =

𝑣

𝑐
 

 Kinetic energy : 𝐸𝑐𝑖𝑛 = 𝐸𝑡𝑜𝑡 − 𝐸0 = 𝛾 − 1 𝑚0𝑐
2 

For a rest particle : 𝛽 = 0, 𝛾 = 1 

For a non relativist particle : 𝛽 ≪ 1, 𝛾 ≈ 1 

For a ultra-relativist particle (close to speed light) : 𝛽 → 1, 𝛾 → ∞ 

 

 Momentum : p = 𝑚 𝑣 = 𝛾 𝑚0𝑣 = 𝛽 𝛾 𝑚0 𝑐 (in MeV/c) 

 𝐸𝑡𝑜𝑡
2 − 𝐸0

2 = 𝛾 𝑚0𝑐
2 2 − 𝑚0𝑐

2 2 = 𝛾2 − 1 𝑚0
2𝑐4 = 𝛽 𝛾 𝑚0 𝑐

2𝑐2 = 𝑝2𝑐2 

For 𝐸𝑐𝑖𝑛 ≪ 𝐸0 , 𝛾 = 1, we have : 

 𝑝2𝑐2 = 𝐸𝑡𝑜𝑡
2 − 𝐸0

2 = 𝐸𝑡𝑜𝑡 − 𝐸0 𝐸𝑡𝑜𝑡 + 𝐸0 = 𝐸𝑐𝑖𝑛 2𝐸0 + 𝐸𝑐𝑖𝑛 ≅ 2𝐸0𝐸𝑐𝑖𝑛 

Therefore : 𝐸𝑐𝑖𝑛 =
𝑝2𝑐2

2𝐸0
=

𝛾2𝑚0
2
𝑣2

2𝑚0𝑐2
=

1

2
𝑚0𝑣

2 

http://www.nndc.bnl.gov/masses/mass.mas03
http://www.nndc.bnl.gov/masses/mass.mas03
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 Lorentz force 

The motion of a charged particle in a electro-magnetic field is given by: 

𝑑𝑝 

𝑑𝑡
= 𝐹 = 𝑞 𝐸 + 𝑣 × 𝐵  

 - F  Lorentz force in Newton 

- P  Momentum in kg.m/s 

- Q  particle charge (±Ze) in Coulomb 

- E, B electric and magnetic induction (resp. V/m and T) 

Remark : B is the magnetic induction,  𝐵 = 𝜇𝐻 

𝐻 is the magnetic field (A/m) 

𝜇 is the permeability of the medium (the degree of magnetization of a material in response to a magnetic 

field) in henries per meter (𝐻.𝑚−1). More explanation in the chapter 2. 

B 

v 

z 

x 

y 

q<0 

E 
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 Lorentz force contribution on charged particle energy 

𝑝 .
𝑑𝑝 

𝑑𝑡
=
1

2

𝑑𝑝2

𝑑𝑡
=

1

2𝑐2
𝑑𝑝2𝑐2

𝑑𝑡
=

1

2𝑐2
𝑑 𝐸𝑡𝑜𝑡

2 − 𝐸0
2

𝑑𝑡
=
𝐸𝑡𝑜𝑡
𝑐2

𝑑𝐸𝑡𝑜𝑡
𝑑𝑡

= 𝛾𝑚0

𝑑𝐸𝑡𝑜𝑡
𝑑𝑡

 

𝑝 .
𝑑𝑝 

𝑑𝑡
= 𝛾𝑚0𝑣  . 𝑞 𝐸 + 𝑣 × 𝐵 = 𝛾 𝑞 𝑚0𝑣  . 𝐸 

⇒
𝑑𝐸𝑡𝑜𝑡
𝑑𝑡

= 𝑞 𝑣  . 𝐸 

 

For accelerate or increase the particle energy: 

 Only electric field is useful 

 If 𝐸 ⊥ 𝑣 , there is no acceleration 

 There is acceleration only if 𝐸 // 𝑣  

v 

z 

x q<0 

E 

Energy gain ∆𝐸𝑡𝑜𝑡 in a static electric field is : 

∆𝐸𝑡𝑜𝑡 (𝑀𝑒𝑉) = 𝑞𝐸  𝑣𝑑𝑡 = 𝑞 𝐸 ∆𝑥 = 𝑞 ∆𝑉 with ∆𝑉 the applied potential in MV 
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Example : 

Considering an Electron (𝑞 = −1) and a Proton (𝑞 = 1) at 𝐸𝑖𝑛𝑖𝑡𝑖𝑎𝑙 = 0 

We apply a accelerating potential to 10MV 

• For both particles, energy gain is 10MeV 

• The speed gain will be: 

For Electron : 𝛾𝑒 = 1 +
𝐸𝑐𝑖𝑛

𝑚0𝑐
2 = 1 +

10

0.511
≈ 20.6 and 𝛽𝑒 = 1 −

1

𝛾𝑒
2 ≈ 0.9988 

For Protons : 𝛾𝑝 = 1 +
10

938.3
≈ 1.0107  and  𝛽𝑝 ≈ 0.145 

 

Accelerator and structures must be design according to particle characteristics 
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x 

y 

z 

 
0 

q>0 

𝑣0 

𝐸  Particle motion in a transverse electric field : 𝐹 =
𝑑𝑝 

𝑑𝑡
= 𝑞𝐸 

 

𝑣 =
𝑥 
𝑦 
𝑧 

 , with : 𝑣 =
𝑥0 
0
𝑧0 

 , 𝐸 =
𝐸𝑥
0
0

, at 𝑡 = 0 : 

𝑥0 = 0
𝑦0 = 0
𝑧0 = 0

 

We have : 

𝑚0
𝑑2𝑥

𝑑𝑡2
= 𝑞𝐸𝑥

𝑚0
𝑑2𝑦

𝑑𝑡2
= 0

𝑚0
𝑑2𝑧

𝑑𝑡2
= 0

, therefore : 

𝑥 =
𝑞

𝑚0
𝐸𝑥𝑡 + 𝑥0 

𝑦 = 0
𝑧 = 𝑧0 

 , then 

𝑥 =
𝑞

2𝑚0
𝐸𝑥𝑡

2 + 𝑥0 𝑡

𝑦 = 0
𝑧 = 𝑧0 𝑡

 

With : 𝑥0 = 𝑣0 sin 𝛼 and 𝑧0 = 𝑣0 cos 𝛼, then  

𝑥 =
𝑞

2𝑚0
𝐸𝑥𝑡

2 + 𝑣0 sin 𝛼 𝑡

𝑦 = 0
𝑧 = 𝑣0 cos 𝛼 𝑡

 

Particle trajectory is parabolic : 𝑥 =
𝑞𝐸𝑥

2𝑚0

𝑧2

𝑣0 cos 𝛼
+ 𝑧 tan𝛼 
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x 

y 

z 

 
0 

q>0 𝑣0 

𝐵 

 Particle motion in a transverse magnetic field : 

 𝐹 =
𝑑𝑝 

𝑑𝑡
= 𝑞𝑣 × 𝐵, 𝑣 =

𝑥 
𝑦 
𝑧 

 , with : 𝑣 =
𝑥0 
0
𝑧0 

 , 𝐵 =
0
𝐵𝑦
0

 

With 𝑧 + 𝑖𝑥  : 
𝑑 𝑧 +𝑖𝑥 

𝑑𝑡
= 𝜔 𝑥 − 𝑖𝑧 = −𝑖𝜔 𝑧 + 𝑖𝑥 , then 

𝑑 𝑧 +𝑖𝑥 

𝑧 +𝑖𝑥 
= −𝑖𝜔𝑑𝑡 

Solution is : 𝑧 + 𝑖𝑥 = 𝑍𝑒−𝑖𝜔𝑡 = 𝑍𝑟 + 𝑖𝑍𝑖 cos𝜔𝑡 − 𝑖 sin𝜔𝑡  

At 𝑡 = 0 : 𝑧0 + 𝑖𝑥 = 𝑍𝑟 + 𝑖𝑍𝑖 = 𝑣0 cos 𝛼 + 𝑖𝑣0 sin 𝛼  ⇒  
𝑥 = 𝑣0 sin 𝜔𝑡 − 𝛼

𝑧 = 𝑣0 cos 𝜔𝑡 − 𝛼
 

We can verify that velocity is constant : 𝑧 2 + 𝑥 2 = 𝑣0
2 

Finally :  

𝑥 =
𝑣0

𝜔
cos 𝜔𝑡 − 𝛼 −

𝑣0 cos 𝛼

𝜔

0

𝑧 =
𝑣0

𝜔
sin 𝜔𝑡 − 𝛼 +

𝑣0 sin 𝛼

𝜔

 

𝑑2𝑥

𝑑𝑡2

𝑑2𝑦

𝑑𝑡2

𝑑2𝑧

𝑑𝑡2

=
𝑞

𝑚
𝑣 × 𝐵 =

𝑞

𝑚

𝑦 𝐵𝑧 − 𝑧 𝐵𝑦
𝑧 𝐵𝑥 − 𝑥 𝐵𝑧
𝑥 𝐵𝑦 − 𝑦 𝐵𝑥

=
𝑞

𝑚

−𝑧 𝐵𝑦
0
𝑥 𝐵𝑦

=
−𝜔𝑧 
0
𝜔𝑥 

 with 𝜔 =
𝑞𝐵𝑦

𝑚
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Particle motion in a transverse magnetic field is a circle 

𝑧 −
𝑣0 sin 𝛼

𝜔

2
+ 𝑧 −

𝑣0 cos 𝛼

𝜔

2
=

𝑣0
2

𝜔2 = 𝜌2  With radius 𝜌 =
𝑣0

𝜔
=

𝑃

𝑞𝐵𝑦
 centered in :  

𝑥𝑐 =
𝑣0 cos 𝛼

𝜔

𝑧𝑐 =
𝑣0 sin 𝛼

𝜔

 

The cyclotron frequency is 𝜔 =
𝑞𝐵𝑦

𝑚
  

The revolution period is then 𝑇 =
2𝜋

𝜔
=

2𝜋𝜌

𝑣0
=

2𝜋 𝑚

𝑞 𝐵𝑦
 

The magnetic rigidity is : B𝜌 =
𝑃

𝑞
 

Numerically : B𝜌 𝑇.𝑚 =
109

𝑐

𝑃 (𝐺𝑒𝑉 𝑐 )

𝑞
= 3.3356 

𝑃 (𝐺𝑒𝑉 𝑐 )

𝑞
 

In the same way, we speak also about the electric rigidity of the beam with : 

 𝐸𝜌 𝑀𝑉 =
𝑣 𝑃

𝑐 𝑞
= 𝛽𝑐

𝐵𝜌 𝑇.𝑚

106
= 𝛽

103 𝑃 (𝐺𝑒𝑉 𝑐 )

𝑞
 

Example : 𝐶12 6+ at 95MeV/u : 𝐸𝑡𝑜𝑡 = 1140𝑀𝑒𝑉, 𝐵𝜌 = 2.8772𝑇.𝑚, 𝑣 = 12.6 𝑐𝑚 𝑛𝑠  

𝐶12 1+ at 60keV : 𝐵𝜌 = 0.1222𝑇.𝑚, 𝑣 = 0.098 𝑐𝑚 𝑛𝑠  

Protons at LHC : 7TeV 𝐵𝜌 = 23352.6𝑇.𝑚, 𝑣 = 29.979 𝑐𝑚 𝑛𝑠 ≈ 𝑐 
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Maxwell Equations : 

1. Divergence of the electric field 𝐸 equals charge density 𝜌 divided by 𝜖0 : 𝑑𝑖𝑣 𝐸 =
𝜌

𝜖0
 

2. Divergence of the magnetic field is zero : 𝑑𝑖𝑣 𝐵 = 0 

3. Curl (𝑟𝑜𝑡) of the electric field is minus the rate of change of the magnetic field : 𝑟𝑜𝑡𝐸 = −
𝜕𝐵

𝜕𝑡
 

4. Curl of the magnetic field 𝐵 equals 𝜇0 times current density 𝐽 , plus the rate of change of electric 

field divided by 𝑐2 : 𝑟𝑜𝑡𝐵 = 𝜇0𝐽 +
1

𝑐2
𝜕𝐸

𝜕𝑡
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Generalities 

In beam optic, we apply a analogy with the geometrical optic where light beams are 

deflected by prims and focus by using focusing or defocusing lenses. 

 Same approach is taking in corpuscular optic. 

 Structure optics are designed in order to induce bend and focalization of the charged 

particles. 

 Bend and focalization can be separated or combined. 

 Systems with electric and/or magnetic fields around a central trajectory are realized. 

 Systems ensure the transverse dimensions of the beam (transverse = orthogonal plane of 

the beam direction) 
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Generalities 

It is use : 

 Magnetic fields at high energy (high 𝛽) 

 Electric fields at low energy (low 𝛽) 

In any case, feasibility and cost have to be taking into account 

 

From Lorentz equation, we can deduce : 
𝐹𝐸

𝐹𝐵
=

𝑞 𝐸

𝑞 𝑣×𝐵
=

𝐸
𝑉/𝑚

𝛽 𝑐𝑚/𝑠 𝐵 𝑇

 

𝐸
𝑚𝑎𝑥

~105 𝑉 𝑐𝑚 = 107 𝑉 𝑚  for gaps between electrodes to few centimeters 

Ex: for 𝛽~1, we have 𝐵 = 0.03𝑇 and for 𝛽 = 0.01, we have 𝐵 = 3𝑇. 

 

 In most circular accelerators, conventional electro-magnets (with iron) inducing magnetic 

fields to 𝐵
𝑚𝑎𝑥

~ 1.8 𝑇 at room temperature are used. 

 In protons or heavy ions machines at very high energy (𝛽~1) like at LHC, we use 

superconducting magnets inducing fields up to 10T. 
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Magnetic field characteristics in magnets 

Magnet dipole 

Bend with flat and parallel poles create a field 𝐵𝑒 uniform at the center in the gap 

Bend can be small (for e- beam at few 100 keV) or huge (15m at LHC for protons at 7TeV) 

 

Iron yoke 

Coil (I) 

C-shape 

 

H-shape 

 

Window 

shape 

Structure of the yoke 

give the name of bends 

 

LHC Bending magnet 

r=2804m, L=15m 

N=1232 

Br=23352.6Tm 

B=8.33T 



15 

Determination of the magnetic field 𝐵𝑒 is obtain 

by the application of the Ampère theorem at 𝐶  

circuit surrounded the two excitation coils 

designed by 𝑁 2  conductors in which circulate a 

current 𝐼. 

 In the gap, induction is 𝐻𝑒 =
𝐵𝑒

𝜇0
 

 In the Iron, 𝐻𝑓 =
𝐵𝑓

𝜇𝑓
=

𝐵𝑓

𝜇𝑟 𝜇0
 where 𝜇0 is the vacuum permeability (4𝜋 10−7 𝑇. 𝐴−1𝑚) 

and 𝜇𝑟 is the relative permeability of Iron   

Ampère theorem :  𝐼 =  𝐻. 𝑑𝑙 
𝐶

= 𝑁𝐼 =  𝐻𝑒 . 𝑑𝑙𝐺𝑎𝑝
+  𝐻𝑓 . 𝑑𝑙𝐼𝑟𝑜𝑛

= 𝑔𝐻𝑒 + 𝑙 𝐻𝑓 

                              𝑁𝐼 = 𝑔
𝐵𝑒

𝜇0
1 +

𝐵𝑓

𝜇𝑟𝐵𝑒

𝑙

𝑔
 

With 𝐵𝑓~𝐵𝑒 (continuity of the orthogonal part of 𝐵) and 𝜇𝑟~10
3 (outside saturation) : 

Ampère-turns is 𝑵𝑰~𝒈
𝑩𝒆

𝝁𝟎
  ,    for g ↑ , 𝑁𝐼 ↑ , cost ↑ 

The gap of high 𝑔. 

Length in Iron 𝑙. 

Ex: LISE spectrometer at GANIL: 𝑁𝐼 = 0.1 ×
1.7

𝜇0
~1.35 105 𝐴. 𝑡 for 𝐵𝑚𝑎𝑥 = 1.7𝑇 with 𝑁 =

160 𝑠𝑝𝑖𝑟𝑒𝑠, 𝐼𝑚𝑎𝑥~850𝐴 
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At room temperature, 𝐵𝑒 = 𝑓 𝑁𝐼  is not linear due to circulation of 𝐻 in Iron. 

Relative permeability 𝜇𝑟 of Iron is a function to 𝐵𝑓 (𝜇𝑟 → 1 when 𝐵𝑓 ↑). 

Hysteresis curve 

𝐵𝑚𝑎𝑥  level depend to 𝜇𝑟  

Permeability dependence to induction 

for various steel types 

 Yoke which channeling the magnetic flux can be realized in massive Iron or by stack of bonded 

plates in order to reduce the Foucault currents produce by the B dependence to time (useful in 

synchrotron) 

 Ampere-turn 𝑁𝐼 are realized by the appropriated number of spires surrounded upper and lower pole 

of the bend. In the precedent case, we have 2𝑥160 conductors (Copper) are carrying by the 

maximum current to 850A (equivalent maximum magnetic rigidity of the beam 𝐵𝜌 = 4.42𝑇𝑚 with 

dipole radius to 𝜌 = 2.6𝑚). 
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Building a bending magnet : 

1. Specifications are fixed by beam dynamics : which beams ? Which deviation ? Which beam size ? … 

ex.: 𝐵𝜌𝑚𝑎𝑥 = 0.84𝑇𝑚, deviation angle 𝜃 = 17.2°, curvature radius ρ = 1137.5𝑚𝑚, therefore 

𝐵𝑚𝑎𝑥 = 0.63𝑇, 𝐺𝑎𝑝 = 90𝑚𝑚, extension of the good field zone= ±35𝑚𝑚 

1. Magnetic study using calculation codes 2D (POISSON, OPERA2D), 3D (OPERA3D, ANSYS) 

2. Optimization (shimming of the return yoke, coils) 

3. Mechanical conception (CATIA…), detailed drawings 

4. Call for tender; building in company of the system 

5. Magnetic measurements (conformity) 

6. On-site installation and alignments (by surveyors) 

• Yokes : 560kG of Iron 

• 2 coils : 105kG of Copper 

• 𝐼𝑚𝑎𝑥 = 153.8𝐴 

• Spires 𝑁 = 156 
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Quadrupole (2x2 poles) 

Beam focalization is provide using magnetic quadrupoles (it can be also done with 

electrostatic lens at very low 𝛽). There is 4 poles (North, South, North, South). 

Equipotential :  = ±𝑔𝑦𝑥 = 𝑐𝑡𝑒 

Field line : 𝐵 = 𝑐𝑡𝑒 

y 

z 

x 0 

Using 𝐹 = 𝑞𝑣 × 𝐵 with 𝑞𝑣  in the 0𝑧 . 

 Horizontal component of the Lorentz force bring back particles in the 0𝑦𝑧 

 Vertical component eject particles of the plan Oxz 

on 𝑂𝑋 > 0 on 𝑂𝑋 < 0 on 𝑂𝑌 > 0 on 𝑂𝑌 < 0 

𝐹  

𝐵 

𝐹  

𝐵 

𝐹  
𝐵 𝐵 

𝐹  

𝑞𝑣  

z 

Hyperbolic pole 

𝑥 × 𝑦 = 𝑐𝑜𝑛𝑠𝑡 

y 

x 



19 

z 

Hyperbolic pole 

𝑥 × 𝑦 = 𝑐𝑜𝑛𝑠𝑡 

y 

x 

Lens is focusing in the horizontal plane and de-focusing in the vertical plane. 

If the quadruple is rotating by 90° or if the polarities are inverted,  opposite effect is obtain. 

For mechanical and electromagnetic symmetry reasons : 

 By(  x, -y) =  By(x,y) 

 By( -x,  y) = -By(x,y) 

 Bx(  x, -y) = -Bx(x,y) 

 Bx( -x,  y) =  Bx(x,y) 

Or By even in y, odd in x 

Or Bx odd in y, even in x 

We can develop the transverse 𝐵𝑦 and 𝐵𝑥 magnetic field (see Taylor expansions) : 

𝐵𝑦 𝑥, 𝑦 = 0 +
𝜕𝐵𝑦

𝜕𝑥
𝑥 + higher orders 

𝐵𝑥 𝑥, 𝑦 = 0 +
𝜕𝐵𝑥
𝜕𝑦

𝑦 + higher orders 

Therefore 𝐵𝑦 = 𝐵𝑥 = 0 at 𝑥 = 𝑦 = 0. A centered beam on the 𝑂𝑧 axis is not deflected. 

If we want a pure linear field, the pole profile is specific : 

From Maxwell equations 𝑑𝑖𝑣𝐵 = 0, 𝑟𝑜𝑡𝐵 = 0 with 𝑗 = 0  taking 𝐵𝑧 =
𝜕𝐵𝑥,𝑦

𝜕𝑧
= 0, we have : 

𝑑𝑖𝑣 𝐵 =
𝜕𝐵𝑥

𝜕𝑥
+

𝜕𝐵𝑦

𝜕𝑦
= 0 and 𝑟𝑜𝑡𝐵

𝑧
=

𝜕𝐵𝑥

𝜕𝑦
−

𝜕𝐵𝑦

𝜕𝑥
= 0 

therefore 𝐵 = −𝑔𝑟𝑎𝑑 ∅ where ∅ is the magnetic potential 
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Using G =
𝜕𝐵𝑥

𝜕𝑦
=

𝜕𝐵𝑦

𝜕𝑥
, we obtain : 𝐵𝑥 = 𝐺𝑦 and 𝐵𝑦 = 𝐺𝑥  

 𝐵 = −𝑔𝑟𝑎𝑑 ∅ =

−
𝜕∅

𝜕𝑥

−
𝜕∅

𝜕𝑦

−
𝜕∅

𝜕𝑧

=

−
𝜕∅

𝜕𝑥

−
𝜕∅

𝜕𝑦

0

=
𝐺𝑦
𝐺𝑥
0

 

 

−
𝜕∅

𝜕𝑥
= 𝐺𝑦 and −

𝜕∅

𝜕𝑦
= 𝐺𝑥, therefore ∅ = −𝐺𝑥𝑦 : equipotential are equilateral hyperbola. 

Physically, 4 poles of the quadrupole are materialized by the equipotential 

 

Fields can be expressed in polar coordinates : 𝑥 = 𝑟 cos𝜑 and 𝑦 = 𝑟 sin𝜑  

 𝐵𝑟 = 𝐵𝑥 cos𝜑 + 𝐵𝑦 sin𝜑 = 𝐺𝑟 cos𝜑 sin𝜑 + cos𝜑 sin𝜑 = 𝐺𝑟 sin 2𝜑 

 𝐵𝜑 = −𝐵𝑥 sin𝜑 + 𝐵𝑦 cos𝜑 = 𝐺𝑟 cos 𝜑2 − sin 𝜑2 = 𝐺𝑟 cos 2𝜑 

We can observed that 𝐵 = 𝐵𝑥
2 + 𝐵𝑦

2 = 𝐺𝑟 increase linearly with the quadrupole radius 𝑟. 
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Field gradient G as a function of Ampere-turns (the current) in the quadrupole coils is determine by using 

the Ampère theorem to 𝒞. 

 𝐼 =  𝐻. 𝑑𝑙 
𝒞

  

𝑁𝐼 =  𝐻 𝑟 . 𝑑𝑟

0 𝑡𝑜 1 (𝑅)

+  𝐻𝐼 . 𝑑𝑙 

1 𝑡𝑜 2 (𝐼𝑟𝑜𝑛)

+  𝐻. 𝑑𝑙 

2 𝑡𝑜 0

 

 From 0 to 1 : 𝐻 𝑟 =
𝐵 𝑟

𝜇0
=

𝐵𝑥
2+𝐵𝑦

2

𝜇0
=

𝐺

𝜇0
𝑥2 + 𝑦2 =

𝐺𝑟

𝜇0
 

 From 1 to 2 : 𝐻𝐼 =
𝐵𝐼

𝜇0𝜇𝑟
~0 because 𝜇𝑟 ≫ 1 

 From 2 to 0 : 𝐻 ⊥ 𝑑𝑙 , therefore 𝐻. 𝑑𝑙 = 0 

𝑁𝐼~
𝐺

𝜇0
 𝑟 𝑑𝑟
𝑅

0
~

𝐺 𝑅2

2 𝜇0
 and the gradient 𝐺 =

2 𝜇0 𝑁𝐼

𝑅2
 with R the quadrupole radius.  

Particle travelling into a magnetic quadrupole of length 𝐿  at a 

distance 𝑥0 from the central axis is deflected by : 

 ∆𝜃 =
1

𝑃 𝑞 
 𝐵 𝑑𝑙 =

1

𝐵𝜌
 𝐵 𝑑𝑙 =

𝐺 𝐿 𝑥0

𝐵𝜌
 

The quadrupole focal length is : 
1

𝑓
=

𝑥0

tan 𝜃
=

𝑥0

∆𝜃
=

𝐺 𝐿

𝐵𝜌
 with tan 𝜃 ~∆𝜃 
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Example : Quadrupoles of the High Energy Beam Transport lines of the SPIRAL2 accelerator 

at GANIL – Caen 

𝑁𝐼 = 25160𝐴𝑡 and the diameter 𝐷 = 128𝑚𝑚 :  

𝐺max 𝑡ℎ𝑒𝑜𝑟𝑖𝑐 =
2 × 4𝜋 10−7 × 25160

0.128 2 2
= 15.44 𝑇/𝑚 

Turns 𝑁 = 68 ⇒ 𝐼𝑚𝑎𝑥 = 370𝐴. 

Due to Iron saturation, we have : 

𝐺𝑚𝑎𝑥 = 13𝑇 𝑚  and on the pole 𝐵𝑚𝑎𝑥 = 13 × 0.128 = 1.664𝑇   

Vacuum pipe diameter is 𝐷𝑝𝑖𝑝𝑒 = 120𝑚𝑚, 𝑅𝑚𝑎𝑥 for the particles is 𝑅𝑚𝑎𝑥 = 60𝑚𝑚   

Magnetic length of the quadrupoles is 𝐿 = 330𝑚𝑚. 

 

 At SPIRAL2 : maximum of the particles rigidity is 𝐵𝜌𝑚𝑎𝑥 = 2.58𝑇𝑚 

Deviation angle is therefore : tan 𝜃 =
𝐺 𝐿 𝑥0

𝐵𝜌
=

13×0.33×0.06

2.58
= 0.0997𝑟𝑎𝑑~∆𝜃 and 

𝑓 =
𝐵𝜌

𝐺𝐿
=

2.58

13×0.33
= 0.601𝑚 

 At SPIRAL2 : minimum of rigidity is 𝐵𝜌𝑚𝑖𝑛 = 0.2069𝑇𝑚 

tan 𝜃 =
13×0.33×0.06

0.2069
= 1.2441𝑟𝑎𝑑 but 13T/m is too high for focusing these particles, 

𝐺~1𝑇 𝑚  is more realistic therefore tan 𝜃 =
1×0.33×0.06

0.2069
= 0.0957𝑟𝑎𝑑~∆𝜃, and the 

focal length is 𝑓 =
0.2069

1×0.33
= 0.627𝑚  
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Few examples : 

Calculation using 

Poisson code of the 

magnetic field in a warm 

quadrupole. 

Field lines 

Pole / Yoke 

Vacuum pile for the 
beam 

Summarize : HEBT quadrupoles at SPIRAL2 Caen : 

𝐺𝑚𝑎𝑥 = 13𝑇/𝑚, 𝐿𝑚 = 330𝑚𝑚, aperture radius= 64𝑚𝑚 

4 coils to 25160A.turn. 

Yoke Iron weight : 750kg, 4 Coils Copper weight : 132kg. 

𝐼𝑚𝑎𝑥 = 370𝐴, 𝑃𝑚𝑎𝑥 = 16.3𝑘𝑊 (need water cooling) 

68 turns (Copper length 1.1m for One turn), water cooled along 75m circuit. 

690mm 



24 

 𝑦 

 𝑥 

Ex.: PS at CERN 

Bend with combined function 

 Used in synchrotron with strong focusing 

 Combination of deflection and focalization using hyperbolic poles 

 𝑧 

𝑋, 𝑥 

 𝑌 

 𝑦 

Such bend can be considered like a quadrupole at a distance 𝑑 from the center. 

 

We can deduce 𝐵𝑋 and 𝐵𝑌 component of the field : 

Using the new reference 𝑥, 𝑦  to 𝑋, 𝑌  : 𝑌 = 𝑦  and 𝑋 = 𝑥 + 𝑑 

 𝐵𝑋 = 𝐺𝑌 = 𝐺𝑦 = 𝐵𝑥 

 𝐵𝑌 = 𝐺𝑋 = 𝐺 𝑥 + 𝑑 = 𝐵0 + 𝑔𝑥 = 𝐵0 + 𝐵𝑦 with 𝐵0 = 𝐺𝑑 
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 According amplitudes of non linearity (effects on the beam), the compensation of these defects can justify 

the use of multipolar lenses. These lens create non linear fields at a given order. 

 These elements correct induce aberrations. 

 The much common lens use is the sextuple (or hexapoles). 

Multipolar lenses 𝟐 × 𝒏 poles  

Strictly, expressions of the magnetic field components already seen are valid only close to the center of 

the gap in a bend. Higher order of the Taylor expansion of the field 𝐵 have been neglected and 

transverses position of particles were small. 

Therefore, it exist high order (non linear terms) terms due to finite dimensions of the pole surface : 

Extension of the poles in the transverse 

plane (section of hyperbole in quadrupole) 

Plateau 

Leakage 

field 

Finite length of bend which induce 

a leakage field 
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60° between poles. 

Compensation of the chromatic 

aberrations 

N N 

N 

S S 

S 

The sextuple case 

Field components are : 

𝐵𝑥 = 2 𝑆𝑥𝑧 = −
𝜕∅

𝜕𝑥
 and 𝐵𝑦 = 𝑆 𝑥2 − 𝑦2 = −

𝜕∅

𝜕𝑦
 

We can verify : 𝑑𝑖𝑣 𝐵 = 0 and 𝑟𝑜𝑡𝐵
𝑧
= 0 

 

On 𝑦 axis, integration give : ∅ = −
𝑆

3
3𝑥2𝑦 − 𝑦3  

Profile of poles are therefore : S 3𝑥2𝑦 − 𝑦3 = const 

 

Using Ampère-theorem, the turn-numbers 𝑁𝐼 are function to the 𝑆 

force by : 

𝑁𝐼 =  𝐻. 𝑑𝑙 =  𝐻𝑟  𝑑𝑟

𝑅

0

=  
𝐵𝑟
𝜇0
𝑑𝑟

𝑅

0

=  
1

𝜇0
𝑆𝑟2𝑑𝑟

𝑅

0

 

𝑁𝐼 =
𝑆𝑅3

3𝜇0
 with R the sextuple aperture radius 
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Examples : magnetic super-conducting structures at accelerator facilities 



28 

LHC at CERN 
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LHC at CERN 
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III.1 Coordinate systems 

Accelerators are structured by a succession of bending magnets and multipolar lenses (quadrupoles, sextupoles 

…).  

In practice, we try to put these elements in the same horizontal plane which is call mid-plane. 

For the calculation of the beam (a set of particles)  motion, we describe the system in the single referential. 

By convention, we use the system (x, s, z) with a reference trajectory (C) associated to a particle (impulsion p0) 

We use also (x,z,y) system instead of (x, s, z). 

• X horizontal axis 

• Z vertical axis 

• S beam axis 

 

 (C) is a straight line in drift space and multipolar lenses 

 (C) is a curve with local curvature to 1/𝜌(𝑠) in 

bending magnet where 𝐵𝑠 = 0,0, 𝐵𝑧0  
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III.2 Field Development 

The general formulas of the field 

components are : 

 

2
2 2

00 01 02 0 2

00

2 2

0

2

2 2

00 0 0

0 0

( 0) 1

1 1
Field index : ,   sextupo

1

lar t

1
In plane 0 : ( 0) 1

erme  :
2

an

2

 

z z
z

z z

z z

z

z

z z

z

B z B nhx h x

B B
n

hB x h

B B
z B z a a x a x B x x

x

B x

B

x B





    
              

    

   
     

   

   





 
 

  0
0 0

0

1
d    which is B =z

q P
h h s B s

qs P
r

r
   

   

    

   

1 2 3

0

1 ' ' 2 ' '

0

1 2 3 2 '' 3 3 2

0

2

2

1
2

2

x z

s z

z z

B s h B nh z h xz

B s h B h z n h nhh hh xz

B s h B h nh x h x h nh h z



 








    



    


 
         

Some approximations have to be done for explain beam trajectories in a simple way. 
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IV.1 Equation of motion 

 

We can write the equation of motion without electric field :

dv
p m qv B

dt
  

    

  

2 2

2 2

The general transverse motion is

1 1

z z

 

+ 1

:

z s

s x

vs q
x h hx x hx B z B

s p s

vs q
x B hx B

s p s

       

    

  2

2

If we keep only the first order in the motion equations and in the transverse fields :

In the horizontal plane :   

In the vertical plane     :   

1

z 0

x n h x h

nh z

   

  



33 

   

 

                                

At first order, horizontal and v

           

                                           z 0

ertical motions are decoupled and independant :

x

z

x K s x h f s

K s z

   

  

 The motion equations are also called Hill’s equations 

 K is also part of the general expression of the Hamiltonian function in accelerator physics 

   

     

   

2 2

0 0

2

Expression to  et  depend to the crossing structures :

1
 Bending magnet with index : 1  and  where 

 Dipolar bending magnet ( 0) :  et 0

 Pure quadrup

x z

z
x z

z

x z

K s K s

B
K s n h K s nh n

hB x

n K s h K s




 
      

 

 





     

   

2 2 2ole :  et  with G=  est /

 In a drift (no field section) : 0 et 0

x z

x z

G G
K s K s nh B G nh B m Tm T m

B B

K s K s x z

r r
r r

         

    
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       

       
 
 

 
 
 

     

       

2

0 0 0 0

0 0

0 0

 : equation is : 1

The complete solution is

In the horizontal plan x

 

e

:

 x

s s
x x

x x x x x x x

x x x

x K s x x n h x h s f s

C s S s
x s x C s x S s S s ds C s ds x C s x S s D s

s s

x s x C s x S s D s



 
r r

   

   

 
 
  

  

       

   

 

 

     

     

2

0 0

0 0

I motion equation is :  z z 0

The complete solution is

n the vertical plan

 

e z 

:

: z

z z

z z

K s z nh z

z s z C s z S s

z s z C s z S s

   

 



 

 

     

 

0 0 0 0, , ,  and  are initiales particles characteristics en 0.

Functions ,  and  are called principal trajectories.

 function characterise chromatic properties of the system (dispersion 

x x z z s

C s S s D s

D s

  

function).

IV.2 General solution of the linear equation – Transfer matrixes 
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 

 

     

     

 

 

 

 

 

 

   

   

 

 

0 0

0 0

0

0

 axis :

 

We can write in matr

a

i

xis 

x system :

  

0 0 1

 :  

x x x

x x x x

z z

z

z z

x s x sC s S s D sx s

x s C s S s D s x s T x s

z sC s S sz s
T

z s C s
z

S s z s

x

  

     
     

          
     

          

   
    

          

 

 

0

0

With det det 1.  et  are called matrix transfer between two plane.x z x z

z s

z s

T T T T

 
 
 
 

 

In practice, beam lines are structured by various optical elements (dipoles, 

quadruples, drift, …). 

We calculate the transfer matrix Tx, Tz of each single elements. 

Total matrix transfer Mx, Mz is the product of each single matrix Tx,z. 
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1 2 3 4 5

Example :

System with 5 elements : from left to right : 

dipole ( ), drift ( ), quadruple  ( ), drift ( ), dipole ( ) :T T T T T

 

 

5

1/ , / , / , / , / , 0/ ,

1

, 5/ , 4/ , 3/ , 2/ , 1/ ,

final 11 0 12 0 13

final

With  or , we have  therefore  , 

The full system matrix with 5 elements is 

i x z i x z i x z n x z i x z x z

i

x z x z x z x z x z x z

x x x

y x z V T V V T V

M T T T T T

x s x T x T x T

x s x







  



   

  



 

 

21 0 22 0 23

final 11 0 12 0

final 11 0 12 0

x x x

z z

z z

T x T x T

z s x T z T z

z s x T z T z

 

  

   








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IV.3 Transfer matrix of perfect optical elements 

 

At first order magnetic field component Bx, Bs et Bz are : 

 

 

   

 

 

 

0

1 '

0

0

0

2

For bending magnets  (with index 0) : 

1

2
For quadruples with  :       0

x z

s z

z z

x

s

z

B s B hz

n B s B h h z

B s B nhx

B s Gz
NI

G B s
R

B s Gx





  


 


 

 


 



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Iron length 

Magnetic length 

   

 

 

0

0

0 max

max

At first order, we can replace real curves  ou  by a crenel to length .

 for dipole

With : 

 for quadruple

z m

z

m

z

m

B s G s L

B s ds
L

B

G s ds
L

G










 



 






a - Magnetic length 

 

b- Sector dipole magnet 

 

 

.

cos sin 1 cos
1

sin / cos sin  and 
0 1

0 0 1

with 

At first order, the bend is focusing in the horizontal plane and a drift in the vertical plane

x z

L
T T

L

 r  r 

 r  


r

 
  

     
  

 



   2 2For this dipole  and 0,  motion equations are :  and 0.x zK s h K s x h x h z     



42 

c- Bend with combined functions 

 

 
       2 2 2 2

, ,

0 0

For this dipole 1  and ,  motions equations are : 1  et 0

1
3 cases to take into account according index range  ( 0, 0 1 and 1). With  

x z

z
x z x z

z

K s n h K s nh x n h x h z nh z

B
n n n n K L

hB x





        

 
       

 
avec L r

   

 

 0 : horizontal focusing, vertical defocusing

cos sin / 1 cos /

cosh sinh /
sin cos sin /    et   

sinh cosh
0 0 1

x

z

x x

z

x x x x

z z

x x x x z

z z

K

K
K K

K

n

K

T T

   r

 
   r

 



 
   
     

  
 




 

   

 

 0 1 : horizontal and vertical focusing

cos sin / 1 cos /

cos sin /
sin cos sin /    and   

sin cos
0 0 1

x

z

x x

z

x x x x

z z

x x x x z

z z

K

K
K K

K

n

K

T T

   r

 
   r

 

 

 
   
     

    




 

   

 

 1 : horizontal defocusing and vertical focusing 

cosh sinh / 1 cosh /

cos sin /
sinh cosh sinh /    and   

sin cos
0 0 1

 For 1, dipole is a drift in t

x

z

x x

z

x x x x

z z

x x x x z

z z

K

K
K K

K

n

K

T T

n

   r

 
   r

 



 
   
    

     






 he transverse planes
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d- Contribution of the dipole with entrance and exit face angle 

 

 

Transfert matrix associated to the turned face :

1 0 0
1 0

tan / 1 0  and   , with  angle of the entrance or exit face.
tan / 1

0 0 1

For 0, beam is defocusing in horizontal and focusing 

x zT T r 
 r



 
  

       
 

 in vertical plane.
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e- Transfer matrix of the quadruple 

 

 

   

   

 

stAt 1  order, motion equations are :

0  with 

z 0  with 

For G>0, 0 . With =  ,  is the magnetic quadrupole length.

cos sin / 0

sin cos 0   an

0 0 1

x x

z z

x

x

G
x K s x K s

B

G
K s z K s

B

G
K s K K L L

B

K

T K

r

r


r

 

 

   

    

  

 
 

  
 
 
 

cosh sinh /
d  

sinh cosh
z

K
T

K

 

 

 
  

 
 

For 𝐺 > 0 quadruple is beam focusing on horizontal plane and defocusing in vertical plane. 

For 𝐺 < 0 quadruple is beam defocusing on horizontal plane and focusing in vertical plane. 
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f- Thin lens 

 

1 0 0 1 0 0

1 0 1/ 1 0

0 0 1 0 0 1

1 0 1 0 1
 with = focal distance

1 1/ 1

x

z

T KL f

T f
KL f KL

   
   

      
   
   

   
     

   

Thin lenses are use at the very beginning of a project. 

A quadruple (length L) is a thin lens with 2 drift space to length. 

focusing defocusing 
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   g- Matrix of the drift space to length L 

 

   

   

Motion equations in a drift are :

          0   and    z 0 

with 0 and 0 because 1/

1 0
1

0 1 0  and 
0 1

0 0 1

x z

x z

x s s

K s K s h h

L
L

T T

 r

  

     

 
  

    
  

 
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 h- Some keys words 

       

   

13 13

0

23

 position dispersion. Images position on  becomes 

= angular dispersion

x x x

x x

p
D s T s x x s T s

p

D s T s


   

 

Achromatic system : 
13

23

13 23

 Achromatic in position if 0

 Achromatic in angle if 0

 Fully achromatic for 

*

* 0

* x x

x x

x x

T D

T D

T T

 

 

 

System resolution : 
12

13
0

0 11

In an point to point system ( 0), resolving power is :

 . 2  is the transverse beam extension (size).
2

x

x

x

T

TP
R x

P x T



 


Dispersion : 
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V.0 Introduction 

A beam is a set of particles with different initials conditions values (x0, x’0, z0, z’0 et ). What 

happened to this set of particles along a line in terms of trajectories. We take about beam 

envelope. 

At first order, horizontal and vertical motion are decoupled. 
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V.1 Phase space and emittance ellipse 

For each particle of the beam, we give a point in the phase space (x,x’) et (z,z’). 

In each plane, the surface occupied by all particles define the phase extension or beam emittance. 

In the general case, complete phase space is 6 dimensions x, x’, z, z’, l,  where l is the trajectory 

length difference of the beam particles. 

x ou z 

x’ ou z’ 

We define Gx et Gz curves which contain the particles, 

It exist a transformation law during the movement      

(Liouville theorem) 



59 

The Liouville theorem 

 

The particle density in the phase space is constant during the movement. 

Surfaces Ax,z of phase space is conserved. 

 

We introduce the normalized emittance =constante, 

Where  represente the surface  in one pl

    beam emittance decrease when beam speed increase.

ane

norm géométrique

x geometrique x

x

cte

A

 














x ou z 

x’ ou z’ 

Ax,z 
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2 2

2

The general equation of these ellipses is :

     with  or 

with  the ellipse surface and ,  ,   coefficients which verify: .

,  ,  

           

 are name

      2

1

d

y

y y

y y y y

y y y

y

y y y

y yy x zy y

 


  



 

 

 



   

 

 Twiss parameters
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 
2

2

21

2

max maxIf ,  on a : d0 0 ,  ellipse is adapted et y y






 

  





 210 0   210 0  

   

11 12

21 22

2

2

11 12 21 22

12
max 11 max 22 max max

11

We define the  beam matrix like : 

with  1, , ,  and det

Also :  , , , 

y yy

y y

y y y y

y y y y y y

y y y y y y

   
 

   

   
          

   


 



   
       

 
         

 

      12

22




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V.2 Transport of the emittance ellipse 

 

1 0

2 2 1

11 12

21 22

Knowing  2  and 1 ,

with :  and 

From longitudinal position s=0 to s=1 with transfer matrix 

we have 

t

t

y yy y Y Y

T T

y
Y

y

T


   



  


  

 



    
    

    

    


 




 

2 2

11 1111 11 12 12

12 21 11 11 22 12 21 12 22 12

2 2

21 21 22 22

2 2

11 11 12 12

21 11 11 22 1

22

1

1

1

2

2 2

2 0

2

2

With the Twiss parameter  : 

2

We have also : 

T T T T

T T T T T T T T

T T T T

T T T T

T T T T T T





 

 







    
    

     
    

 
 

  

   



 

 




12 22

2 2

21 21 22 22 0
2

T T

T T T T







  
  

  
     
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       

     

   

2
11 1 11 0 21 0 22 0

1 0 0

1 0 21 1 21 0 22 0

1 0

22 1 22 0

max 22int

22

2

        

det
We have  and 

1
The drift space transfer matrix is 

0 1

y y

s s L s L s
y y Ly

V TV s s L s
y y

s s

y cte y cte

L
T

   

  

 






 
 
 


 

 
 



  
 

    
 



   



1 – Ellipse transformation in a drift space to length L : 

1 0

1 0
1 0 0

max 11int

11

sin
1

sin

1

1 0
cos /

Quadrupole transfer matrix is  or thin lense  
1cos

      

det
We have  and 

y y

f

f

K

K

y y

V TV
y y y

y cte y cte

 

 






 
   
 

     
 












 
  

    

2 – Ellipse transformation in a focusing lens (same for quadrupole) : 

3 – Ellipse transformation in a defocusing lens (same for quadrupole) : 

1 0

1 0
1 0 0

max 11int

11

sinh
  1

sinh

1

1 0
cosh /

Quadrupole transfer matrix is  or thin lense 
1cosh

      

det
We have  and 

y y

f

f

K

K

y y

V TV
y y y

y cte y cte

 

 






 
   
 

  
  
 









 
  

    
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 

01

02

01 01 1 1 0

02 02 2 2 0

0

 therefore 0

0

0

 therefore 0

Particle 1 : 0 et 0  

Particle 2 : 0 et   1

V

V

x x p p

x x p p





  

 
 

  
 
 

 
 

  
 
 

    

     

V.3 Effect of the dispersion energy 

For 2 individual particles 

       

       

   

       

0 0

0 0

1 1

2 2

Particle 1 : 0 s

Particule 2 : 

For 

2 particles spread to  proportionally to  and local disp

azimuth  after a bend :

 

 and 

x x x

x x x

x x

x s C s x S s x D s

x s C s x S s x D s

x s x s

x s D s x s D s

s

x











   


      

  

 

    in the matrix transferersion .xD s
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V.3 Effect of the dispersion energy 

 

   
max  pi

x
xs sx







    maxmax

x
x xx s s D


 


 

For a set of particles with same transverse phase space in 0 at ±∆𝒑 deviation 

 

   

    maxm

ma

a

0

x

x  pi

Position spread of the beam center for each  is /  

Total extension of the complete beam is :  

For a given value of   , beam extension is identical  

x

x

i x

i

x

x

x

s s

x D

x s D

p p

s

p x

p














  

 



67 

   13 120  and focalisation at a given azimuth  0 . 

We can design an optical system with : 

dispersion function T s T 

ˆ2x x 

Resolving power 

 

max max
max max 13

0 0

0

13

In this dispersive plane, images center is : 

It existe a quantity  where images are juxtaposed,

ˆ ˆinstead 2 , where  is the FWHM of the monochromatic i

x x

r

r

p p
x D D T

p p

p

p

x T x x







 
   




  

13 13

mage.

2
ˆ2

 is called resolution power of the system : 

x
x

r r

x
R

T T




    
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Example with the dispersion section of the LISE (Ligne d’Ions Super Epluchés) spectrometer at GANIL in Caen. 

Target (object) 

2 quads 

45° bend 

2 quads 

Dispersive plane 

(image) 

Section length : 7.46m 

Full spectrometer length : 43m 

1st Transfer matrix of the section (units : cm, mrad, %): 

             -0.73928   0.00017   0.00000   0.00000   0.00000  -1.65347 

              8.65925  -1.35471   0.00000   0.00000   0.00000  -3.59935 

              0.00000   0.00000  -3.73131  -0.00203   0.00000   0.00000 

              0.00000   0.00000  -6.96975  -0.27180   0.00000   0.00000 

             -1.69788   0.22406   0.00000   0.00000   1.00000  -0.20355 

              0.00000   0.00000   0.00000   0.00000   0.00000   1.00000 

D en cm/% 
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Example with the dispersion section of the LISE (Ligne d’Ions Super Epluchés) spectrometer at GANIL in Caen. 
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