L. Perrot

Institut de Physique Nucléaire d'Orsay, Université Paris XI,

perrot@ipno.in2p3.fr, 01 69 15 71 58

- 1. <u>General description of SPIRAL-2 facility</u>
- 2. <u>Ion sources and low energy beam transport line (Lignes Basse-Energie)</u>
- 3. <u>The RFQ</u>
- 4. <u>The Medium Energy Beam Transport line (Ligne Moyenne-Energie)</u>
- 5. <u>The superconducting LINAC</u>
- 6. <u>The High Energy Beam Transport line (Ligne Haute Energie)</u>

1. WHAT IS SPIRAL2

SPIRAL2 (Système de Production d'Ions RAdioactifs en Ligne de 2^{ème} génération) is a

project of linear particles for studies in

fundamental nuclear physics and interdisciplinary research

The facility, larger than existing facility at GANIL Caen will produce "exotic" ions beams

EXPLORATION OF TERRA INCOGNITA

- In white : 291 natural nuclides
- Sky blue : 2000 nuclides already produced in laboratory
- In red : nuclides produce with the SPIRAL2 accelerator

SPIRAL2 AT GANIL FACILITY

ORGANIZATION AND PHASE

NEW EXPERIMENTAL AREAS

Accelerated Protons and Deuterons by the SPIRAL2 linac can generate a neutrons source extremely intense

NFS (Neutrons For Science) are will use these neutrons for fundamental physics experiments and others applications (ex: cross sections measurements for next reactors generation, fusion ...)

SPIRAL2 linac accelerate stable ions at very high intensity. By nuclear reactions, it will produce extremely rare isotopes like very heavy, super heavy elements or deficient neutrons nuclides.

S3 (Super Séparateur Spectromètre) is design for accept these high intensity and provide a precise separation degree in order to reject the contaminants and permit the identification of the interest nucleus.

LINAC AND PRODUCED BEAMS

Faisceau	p+	D+	ions	ions
Q/A	1	1/2	1/3	1/6
I (mA) max.	5	5	1	1
W _o min. (Mev/A)	2	2	2	2
W _o max. (Mev/A)	33	20	14.5	8.5
CW max. beam power (KW)	165	200	44	48

Longueur totale: 65 m (sans les lignes haute énergie)			
D*: sourc ECR			
Ions lourds: source ECR			
Hacheur lent et rapide			
RFQ (1/1, 1/2, 1/3) & 3 regroupeurs			
12 QWR beta 0.07 (12 cryomodules)			
14 QWR beta 0.12 (7 cryomodules)			
Liquéfacteur Hélium 1 KW (4.2 K)			
Q-poles chauds			
30 amplificateurs RF état solide (10 & 20 KW)			

2. ION SOURCES AND LOW ENERGY BEAM LINES

ECR ION SOURCES

ECR = Electron Cyclotron Resonance

SPIRAL2 Q/A=1/3 ION SOURCE

SPIRAL2 DEUTERON ION SOURCE

- Operational since 2009 (CEA-Saclay)
- 2kW 2.45GHz magnetron Pulsed or CW mode
- Up to 50kV bias potential
- 0,15 to 10mA Proton/Deuteron beams

LEBT CONFIGURATION

- Why LEBT ?
 - <u>Collection</u> of beams from the 2 sources,

~ 16 m

- <u>Selection</u> of ion needed,
- Ensure a good <u>transport</u>,

~ 5 m

– <u>Adaptation</u> to entrance of RFQ

Lines Configuration

Beam level : 1500mm

Standard aperture of beam pipes ~ \varnothing 160mm

IONS SELECTION COMING FROM SOURCE

- Protons/Deuterons (LBE2): simple magnetic separation
 - ✓ Dipole LBE2-D11 (with water cooled vacuum chambers)
- Heavy Ions (LBE1): spectrometer like
 - ✓ Dipole LBE1-D11 (with water cooled vacuum chambers)
 - ✓ Optical system Object / Image (resolving power better than 1/100)
 - ✓ Selection slits (cooled)

Position fil (mm)

Beam profile measurement on LBE1-PR13

BEAM TRANSPORTATION UP TO RFQ

- Transmission optimization and emittance preservation
- Give a stable and well adapted beam to RFQ entrance
- Magnetic transport : dipoles, solenoids, quadrupoles...
- Key role of beam instrumentation (diagnostics, slits ...)

BEAM TRANSPORTATION UP TO RFQ

Profiler

Secondary emission monitor 47 Tungsten wires ø 150 μm Maximum beam size: 80 mm Imax: 0.1-1 mA cw

DCCT

 $\begin{array}{l} \mbox{Shielding:} (\mu\mbox{-métal + Armco + copper}) \\ \mbox{B.W.:} 0 - 10 \mbox{ kHz ; Noise: } 1 \mbox{ } \mu\mbox{A / Hz}^{\mbox{$\frac{1}{2}$}} \\ \mbox{C.W. + Low Duty Factor Pulsed Mode Operation} \end{array}$

Emittance-meter

Allison scanner Max. diameter beam: 80 mm Max measurable angle: ± 100mrad H.V. max: 2.8 kV Max Beam power: 300 W

Faraday Cup Water cooled P max: 1,2 kW (250°) P density max: 2120 W/Cm²

BEAM POWER CONTROL

Crucial role for a high power machine

- From I_{min} (typically 100 μA) to I_{max} (6.5 mA)
- Controled by a system to 3 slits in horizontal and vertical axis
- ✓ Coupling with definition of beam emittances: when I \downarrow , $\varepsilon \downarrow$

Software dedicated to emittances definition

Measurement of 50µA Deuterons beam at Saclay 18

BEAM POWER CONTROL

Crucial role for a high power machine

 Using electrostatic : provide a pulsed beam

- ✓ V and f max : 10 kV, 1.5 kHz
- ✓ Duty cycle : typically for the fir linac beams : 0.1% (500µs @2Hz)

Hacheur (chopper) electrodes

Beam profiler and associated "scrapper"

PRODUCED BEAMS

> Type

- <u>LBE1+LBEC</u>: heavy ions with $A/q = 3 \max(ex: {}^{12}C^{4+}, {}^{16}O^{6+}, {}^{20}Ne^{7+}, {}^{40}Ar^{14+}, {}^{58}Ni^{19+})$
- <u>LBE2+LBEC</u>: Deuterons, Protons, H_2^+

> Energy

✓ Ions speed must be <u>adapted to first modulations of RFQ</u>

✓ Required source potential

$$W = qV_{source} = (\gamma - 1) m_0 c^2 \approx \frac{1}{2} m_0 v^2 \Rightarrow V_{source} \approx \frac{m_0 c^2}{2q} \beta^2$$

 $\beta = 6.553.10^{-3} \Rightarrow V_{source} = \frac{A}{q} \times 20 kV$
Ex. Protons: 20.15 kV, Deuterons: 40.27 kV, ¹⁶O⁶⁺: 53.31 kV, ¹²O⁴⁺: 59.99 kV

✓ <u>LEBT beam energy</u>

$$\Rightarrow W = A \times 20 keV$$

EMITTANCES AND PEAK CURRENT

Emittances

- <u>Transverses:</u> 0.1 à 0.3 π .mm.mrad (Normalized RMS emittance) 200 à 500 π .mm.mrad (Marginal emittance not normalized)
- <u>Longitudinal:</u> Continuous beam

Peak current

- ✓ <u>Protons, deuterons</u> : more than 6.5 mA for obtain 5 mA max in the LINAC
- ✓ <u>Heavy ions</u> : 1.3 mA (if possible) for obtain 1 mA max in the LINAC Ex. ${}^{16}O^{6+}$ 1.3 mA, ${}^{20}Ne^{7+}$ 0.4 mA, ${}^{40}Ar^{14+}$ 50 µA, ${}^{58}Ni^{19+}$ 20 µA
- ✓ At these low energy at relatively high current, Coulomb repulsion contribute on the beam (ie: this is the <u>charge space</u>)
- ✓ In a magnetic transport line, these forces are compensate :
 => <u>beam tuning depend slowly to the current level</u> (first tuning using the *B*ρ scaling is possible ^(©))

SPACE CHARGES COMPENSATION

Compensation phenomena

- ✓ Residual gas ionisation
- Electron trapping by the beam(@potential positif)
- ✓ Neutralization of space charges forces
- Not well controlled aspects
 - ✓ Compensation level (close to 100%)
 - ✓ <u>Transients aspects</u> in pulsed mode (the neutralization is not instantaneous)
 - ✓ High contribution of the <u>residual gaz</u> <u>nature (type) and pressure level</u>

Emittanc@aloelastionerofetheatr@FScient SPIRAL2comprensat(by:(by:(by:UNioC))auvin)

VACUUM PRESSURE

✤ Sufficiently good

in order to suppress losses by electronic capture

* Not to good

For decrease the time of the increasing of the compensation (and ameliorate the emittances)

Transmission (calculation) and transients compensation (Deuterons case) as a function of the residual gas pressure

- Vacuum level have to be carefully choose
 - Between 10⁻⁶ and few 10⁻⁵ mbar for Protons/Deuterons particles
 - Between 10^{-8} and few 10^{-7} mbar for working with heavy ions

LBE1 DESCRIPTION (5/6)

LBE1 DESCRIPTION (6/6)

THE SPIRAL2 ACCELERATOR AT GANIL-CAEN LBE2 + LBEC DESCRIPTION (3/4)

THE SPIRAL2 ACCELERATOR AT GANIL-CAEN LBE2 + LBEC DESCRIPTION (4/4)

3. THE SPIRAL2 RFQ

WHY A RFQ IS NEEDED ?

What we have to put between the source and the LINAC for :

- #1 : obtain a good transmission of the LINAC ($I_{LINAC} = I_{Source}$)
- #2 : obtain a good efficiency of the LINAC (energy gain per cavity)

?

#1 : A GOOD TRANSMISSION OF THE LINAC

#2 : A GOOD ACCELERATION IN THE LINAC

Particles must be in synchronism with the accelerating field in order to have a maximum energy gain per cavity.

Ions speed is imposed by the geometry and the frequency of the LINAC cavities

$$dT = \frac{T_{rf}}{2}$$
 $dT = \frac{dz}{v} = \frac{dz}{\beta c}$ $\beta = \frac{2 dz}{c T_{rf}} = \frac{2 dz}{\lambda_{rf}}$

Numerical application :

88 $MHz => \lambda_{rf} = 3.4 m$ dz = 10 cm $\beta = 0.06 => W Protons = 1.6 MeV$

IDEAL SYSTEM BETWEEN SOURCE AND LINAC

-1- Efficient bunching at the RF frequency

 \Rightarrow Set of "bunching cavities" at f_{rf} (adiabatic bunching, $\rho > 95\%$)

- -2- Acceleration at high energy ($V_{acc} > 1 MV$)
- \Rightarrow Set of "accelerating cavities" at f_{rf} (LINAC)
- -3- Radial focalization in order to don't lose particles

-1- + -2- = RF structure => Radio-Frequency Quadrupole (RFQ)

First publication : I.M. Kapchinskiy, V.S. Tepliakov, Prib. Tekh. Eksp. 2, 19-22 (1970)

At Los Alamos : R.H. Stokes, **K.R. Crandall**, J.E. Stovall, and D.A. Swenson, "RF Quadrupole beam dynamics", PAC79

In Europe (LNS-Saclay) : J-L. Laclare, M. Olivier et all, design in 1982 => 1st beam in 1984

FEW ASPECTS OF RFQ

The electric field oscillate at the RF frequency

⇒Transport of the particles in a series of focusing and defocusing quadrupoles

Alternating focusing No E_z longitudinal component \Rightarrow No acceleration

Electrodes modulation des électrodes in order to create a longitudinal component $E_z(z)$

- ⇒ Continuous series of "cavities"
- \Rightarrow Radial focusing
- + Progressive bunching of the beam
- + Acceleration of bunches

5 SECTIONS OF THE RFQ (1/5)

Section 1 – Radial adaptation at the entrance ("Radial Matching section") Make a beam with small dimensions ($r_{max} \sim 5 mm$) Progressive adaptation of the beam at the RF focalisation (as a function of time)

Acceptances without radial adaptation

Acceptances with radial adaptation

5 SECTIONS OF THE RFQ (2/5)

Section 2 – Shaper section « Mise en forme des paquets »

Almost no acceleration ($\Phi s \sim -90^\circ$)

Very slow increasing of the modulation for start the adiabatic bunching

5 SECTIONS OF THE RFQ (3/5)

Section 3 – Adiabatic bunching or "Gentle buncher section"

Progressive acceleration until nominal acceleration rate

Progressive variation of phase Φ_s (-90° => -30°) and modulation (1.1 => 2.0)

5 SECTIONS OF THE RFQ (4/5)

Section 4 – Acceleration or "accelerating section"

Constant parameter for the maximum accelerating rate $\Phi_s = -30^\circ$, modulation = 2, $V = V_{max}$

5 SECTIONS OF THE RFQ (5/5)

Section 5 – Exit matching section

Taking into account of the fringed fields (champ de fuite) at the exit of the RFQ (radial and longitudinal effects)

PARAMETERS OF THE SPIRAL2 RFQ

BEAM CALCULATION OF THE SPIRAL2 RFQ

FROM PROTOTYPE TO OPERATION

Prototype

Careful attention must be taken :

- To obtain tension law and the good frequency
- Cooling
- > Manufacturing tolerances ($\pm 65\mu m$) and assembly ($\pm 100\mu m$)

Final RFQ : Assembling

FROM PROTOTYPE TO OPERATION

On site ...

Ready for beam !

4. THE MEDIUM ENERGY BEAM TRANSPORT (MEBT)

GENERAL VIEW OF THE MEBT

BEAM CHARACTERISTICS AFTER THE RFQ

RFQ exit:

- Beam : bunched (88 MHz)
- Speed : $\beta = 0.04$
- Current : **100** µ*A* to **5** *mA*
- Power : up to 7 kW
- Particles : **Protons, Deuterons, heavy ions**
- Mass/charge ratio A/q : 1 to 7
- Energy : **0.75 MeV/A**
- Duty cycle : 0.1% à 100%

Z is the beam direction (longitudinal axis)

Example: Deuterons at 5 mA

BEAM CHARACTERISTICS : PHASE SPACE

Phase spaces, emittances: ε

Large transverse divergence + space charge

Example : One particle with 5 mm, 50 mrad \rightarrow after z=10cm, position is **10 mm**

- **Focusing devices**
- Acceleration
- **Diagnostics**
- **Pumping device** Bunch selector

- 10 quadrupoles with horizontal or vertical steerer
- 3 rebuncher
- 3 sets of vertical and horizontal slits
- 3 sets of beam profilers (vertical and horizontal)
- 1 device for transverse emittance measurement
- 1 DCCT (beam current)
- 1 rapid Faraday cup
- 1 FCT (current and phase extension measurement)
- 7 location for pumping system
- Electromagnetic dipole
- Beam stopper
- Rapid chopper (bunch suppressor)

MEBT DIAGNOSTICS

MEBT FUNCTIONS

The 6 main functions of the MEBT :

- **1 Provide focusing and maintain the beam bunched at the RFQ exit**
- 2 Ensure a possible upgrade of the accelerator with future A/Q=6 beam line
- 3 Maintain beam bunched for the LINAC
- 4 Cleaning the beam
- 5 Provide bunch selection
- 6 Beam matching for the LINAC

1 - GET THE BEAM FROM THE RFQ

2 - UPGRADE OF THE ACCELERATOR WITH FUTURE A/Q=6 BEAM LINE

2 - UPGRADE OF THE ACCELERATOR WITH FUTURE A/Q=6 BEAM LINE

3 - MAINTAIN BEAM BUNCHED FOR THE LINAC

RF buncher principle

Staying in the linear part of the accelerating field

- \circ For E=0 : speed is constant
- Arrive in advance, particle is slowing-down
- Arrive late, particle is accelerate

4 - CLEANING THE BEAM

4 - CLEANING THE BEAM

- Adjustment of the cleaning slits using the various beam intensity diagnostics (DCCT, FCT and Faraday cup).
- Dissipate power on each slits do not exceed 150 W.
- 1W lost in the LINAC cost ~1kW in cryogenic consumption + structures activation

5 - PROVIDE BUNCH SELECTION

Needed for physics experiments : keep 1 bunch over 1000 or 10000

Need a device to carry out this feature :

- Rise time : 7 ns
- Phase speed : beam, 4% de c
- Use a magnetic dipole and electric field switch in order to realize the 999/1000 suppression bunches

5 - PROVIDE BUNCH SELECTION

6 - BEAM MATCHING FOR THE LINAC

- **The LINAC is a focusing channel almost quasi periodic.**
- □ We can adapt the channel to the beam or adapt the beam to the channel.
- □ At Spiral2, the second method have been choose. This is the most simple way for variable currents and also because there is various beams to accelerate.

Postulate

- Beam is considered adapt in a periodic channel if beam parameters are identical at the entry and at the exit of a period (~section of acceleration)
- It exist for One set (q/A, current, ε) only one beam at the entrance which valid the first condition

A beam is 3 dimensions (X, Y, Z) & 3 divergences (X', Y', Z')

- \Rightarrow 6 parameters \rightarrow 6 independent tuning
- \Rightarrow 4 quadrupoles and 2 re-bunchers of the MEBT will provide the adapted beam for the LINAC.

<u>Difficulty</u> : the space charge introduce coupling between X, Y, Z dimensions ⇒In space charge condition, matching of the 3 planes (X, Y, Z) must be done at the same time.

5. THE SUPRA-CONDUCTING LINAC

THE SPIRAL2 LINAC

Need to accelerate : Protons to A/q=7 ions Variable energy : from 2 MeV/A to 33 MeV/A ⇒ Cavities with independent phase

High intensity :

- Short cryomodules
- Periodic and continuous structure
- Repartition of diagnostics : fair and square

14.5 m, 12 cryomodules A (12 cavities) =CMA

15.5 m,7 cryomodules B (14 cavities) =CMB

CHARACTERISTICS OF THE SPIRAL2 CAVITIES

Cavity	A	В
Number of cavity	12	14
Ø cavity diameter (mm)	238	380
Ø Beam pipe diameter (mm)	38	44
f [MHz]	88.05	88.05
$\beta_{optimum}$	0.07	0.12
E_{peak}/E_{acc}	5.36	4.76
B_{peak}/E_{acc} (mT/MV/m)	8.70	9.35
L _{acc} [m]	0.24	0.40
V_{acc} at 6.5 MV/m & $\beta_{opt}(MV)$	1.55	2.66
G [Ω]	22	37
r/Q [Ω]	600	515
Q ₀ (P _{cav} =10W @ 6.5 MV/m)	3.5 108	1,4 109

FIELD DISTRIBUTION IN CAVITY

110 mm for type A 190 mm for type B

POWER COUPLER OF CAVITY

Power coupler function :

- > Transmission of the RF power of the RF source to the beam
- Ensure the thermic transition between ambient temperature (300 K) to the cavity temperature (few K)
- Establish a barrier between cavity vacuum and outside

Definition of an external coupling coefficient Q_{ext} :

$$Q_{ext} = \frac{\omega W}{P_{ext}} = Q_0 \frac{P_{CAV}}{P_{ext}}$$

W : energy RF stored in the cavity

 P_{ext} : supplied power to the cavity (10kW)

 $\Rightarrow Q_{ext}$ fixed by the cavity parameters and the beam

$$Q_{ext} = \frac{V_{acc}}{\left(\frac{r}{Q}\right)I_b\cos\Phi_S}$$

 V_{acc} : acceleration potential of the cavity I_b , Φ_S : beam current and synchronism phase

The coupling Q_{ext} is adjusted by the penetration antenna in the cavity Order of magnitude : $10^4 - 10^6$ (high gradients)
POWER COUPLER OF CAVITY

CRYO-MODULE : CMA / CMB

CRYO-MODULE A : CMA

- Separated vacuum chamber cavity
- > Static losses < 11 W

$$P_{CAV} < 10 W/cavity (E_{acc} 6.5 MV/m)$$

CAVITIES : CHEMICAL PREPARATION HPR (HIGH PRESSURE REACTORS)

Chemical attack : $150\mu m$

CRYO-MODULE A (CMA) – ASSEMBLY IN CLEAN ROOM

Assembling of coupler on the cavity

Cavity implantation in the vacuum chamber in the clean room

Systematic counting of dusts of the piece mounting on cavities

CRYO-MODULE A (CMA) ASSEMBLY OUTSIDE THE CLEAN ROOM

Next steps of the assembly are done outside the cleaning room

Bottom view of the CMB open

CRYO-MODULE – TRANSPORTATION ON SITE

CRYO-MODULE – ON SITE AT SPIRAL2

BEAM TUNING STEPS – INCREASE THE POWER

 \rightarrow Without beam

→ Minimum power

- □ <u>Phase #1: Channel definition</u>:
 - Transverse focusing
 - Field law and synchronism phase of cavities

□ Phase #2: Tuning of the structure (at 1st order):

- Transverse position
- Field and phase of cavities
- $\square Phase #3: Beam tuning (2nd order):$
 - o Transverses and longitudinal sizes

Dependence Phase #4: Power increasing :

• Power increase with the increasing of the duty cycle

Phase Peak Pulse Frequency Average power Average (40 keV / 40 MeV) length current current 200 µs 0.4 mW / 0.4 W50 µA 1 Hz 10 pA #2 #3 5 mA 200 µs 1 Hz 1 µA 40 mW / 40 W#4 CW 200 W / 200 kW 5 mA 5 mA

→ Minimum power at nominal current

Example : Deuterons beam

BEAM TUNING STEPS – PHASE #1

- 👖 🗖 Quadrupoles gradients calculation in order to create continuous transverse focusing.
 - \square Synchronism phases and cavities accelerating field calculation
 - \rightarrow Continuous longitudinal focusing
 - \rightarrow Check if desired acceleration is sufficient
 - \rightarrow Maximization of the longitudinal acceptance

□ In practice : very hard because everything is coupled and machine stability impose rules. We use simulation tools which give optimization of these calculations.

□ For each particle species and energies, calculation have to be reproduce independently to the beam current

BEAM TUNING STEPS – PHASE #2 : PHASE AND RF FIELD

BEAM TUNING STEPS – PHASE #2 : PHASE AND RF FIELD

Hypothesis:

- Calculation done using fieldmaps are correct
- Time of Flight measurements are sufficiently precise
- Beam loading suppress by the cavities detuning
- The beam is bunched correctly

Need new adjustments

- Steerers
- Quadrupoles

BEAM TUNING STEPS – PHASE #2 : BEAM LOADING

Beam is decelerated in a switched-off cavity by the potential induced by the "beam loading".

 \rightarrow A switched-off cavity for any reason must be detunes in frequency

BEAM TUNING STEPS – PHASE #2 : TRANSVERSE POSITION

26

26

Compensation of the misalignments Compensation of the cavities steering

Steps :

From cavity 1 up to cavity 24 Detuning cavity 1 à 24 Tuning ϕ_S , E_{acc} of the cavity Alignment of the first period Put nominal values fields of the quadrupoles $f(B\rho)$

BEAM TUNING STEPS – PHASE #3 : MATCHING-MISMATCHING

Effect of the mismatching :

- \rightarrow Emittances growth
- \rightarrow Halo formation
- \rightarrow Beam losses
- \rightarrow Decrease of the performances for the physics experiments

Get close beam at the entrance and at the exit of the period

BEAM TUNING STEPS – PHASE #3 : METHODOLOGY

- Tuning of the last LME quadrupole double (LME-Q26, LME-Q27), first quadrupole doublet of LINAC (LINA-Q01 & LINA-Q02) and 2 rebunchers of the LME (LME-GR2 et LME-GR3)
- > Criteria : sizes $(\sigma_X^2 \sigma_Y^2, \sigma_z)$ are constant at each period
- > Measurement to $\sigma_X^2 \sigma_Y^2$ over 5 periods (from 2 to 7) using the Beam Position Monitors (BPM)
- Measurement to σ_z over 4 periods (from 2 to 6) using the Beam Extension Monitors (BEM)
- > This method isn't based on the direct beam sizes but on discrepancies over One period
 - \Rightarrow Suppression of the uncertainties on emittances, systematic errors of the diagnostics

BEAM TUNING STEPS – PHASE #3 : BEAM POSITION MONITOR

Current induction on the 4th electrodes when the beam pass through

Dipolar momentum of BPM : $D \approx \frac{X_C}{R}$

✓ Size coupling negligible

Quadrupolar momentum of BPM : $Q \approx \frac{X_c^2}{R^2} + \frac{\sigma_x^2 - \sigma_y^2}{R^2} + \cdots$

- ✓ Coupling with the slow position (1/10)
- \checkmark Amplitude signal at same order than dipolar momentum

Crucial diagnostic

- > Phase measurement : Using time of flight technic, dedicated to cavities tuning, E_{acc} et φ_s
- Position measurement : beam alignment along LINAC
- > Quadrupolar momentum measurement : transverse matching of the beam in the LINAC

BEAM TUNING STEPS – PHASE #3 : LINAC MATCHING

BEAM TUNING STEPS – PHASE #3 : LINAC MATCHING

ASPECTS OF THE LOSSES – TRANSVERSE BEAM PROFILES

Calculation for 400.000.000 particles

ASPECTS OF THE LOSSES – LONGITUDINAL BEAM PROFILE

Calculation for 400.000.000 particles

ASPECTS OF THE LOSSES – BEAM POWER

BEAM POWER ?

Deuterons beam : 40 MeV, 5 mA = 200 kW

1 kg of Copper

Melted in 3 seconds !

ASPECTS OF THE LOSSES

Losses control : Using the beam loss monitor Losses minimization : Increase the acceptance

PHASE SPACES AT THE EXIT OF THE LINAC

6. THE HIGH ENERGY BEAM TRANSPORT LINES

IMPLANTATION OF HEBT

S3 = Super Separator Spectrometer = experimental hall

3 lines (totale length = 54.5m) :

- LHE1 : from LINAC to Beam-dump. L=21.3m.
- LHNFS : from dipole LHNFS-D11 to neutrons converter. L=14m.
- LHS3N : from dipole LHE2-D11 to target area of Super Separator Spectrometer S3. L=19.2m.

HEBT : NAME OF THE ELEMENTS

TRANSPORT UP TO THE BEAM-DUMP

From LINAC exit up to the beam-dump

3 sub sections :

- LINAC beam matching
 - \circ 4 quadrupoles + One set of X Y steerer
 - 2 EMS + 1 ToF + 1 ACCT-DCCT + 1 ring losses + 1 BLM
- One triplet
 - 3 quadrupoles + One set X Y steerer
 - 2 EMS + 1 ring losses + 1 BLM
- beam matching to beam-dump
 - 4 quadrupoles + One set of X Y steerer
 - 3 EMS + 1 ACCT-DCCT + 1 ring losses + 1 BLM
 - 1 segmented collimator or clover (4 current measurement)
 - 27 thermocouple sensors fixed on the beam-dump

TRANSPORT UP TO THE NFS EXP. AREA

From LINAC exit up to NFS : 4 sub sections

- LINAC beam matching
 - \circ 4 quadrupoles + One set of X Y steerer
 - 2 EMS + 1 ToF + 1 ACCT-DCCT + 1 ring losses + 1 BLM
- One triplet
 - 3 quadrupoles + One set X Y steerer
 - \circ 2 EMS + 1 ring losses + 1 BLM
- Left-left deflection
 - 2 dipoles + 3 quadrupoles + 1 steerer Y
 - 1 EMS + 1 ring losses + 1 BLM
- Matching to NFS + neutrons converter hall
 - o 4 quadrupoles + 2 steerers Y + 1 steerer X
 - o 3 EMS + 1 Faraday cup
 - 2 target points (irradiation and converter)

High limitation for NFS : $P_{max} = 2kW$ in Deuterons at 40MeV

FEW WORDS ABOUT NFS EXP. AREA

> NFS will use light particles : Deuterons (40MeV) and Protons (10MeV-33MeV) : **0**. $4Tm < B\rho < 1.3Tm$ > $P_{max} = 2kW$ ($I_{max} = 50\mu A$ Deuterons at 40MeV) using source peak current reduction (for irradiation experiments) or bunch suppressor of the MEBT (rate 1/100 or more)

▶ Beam sizes : 1 to 4mm RMS

- > Need a bunched beam on neutrons converter for the neutrons time of flight experiments
- > Primary beams are stopped in target or in a beam stopper

TRANSPORT UP TO THE S3 EXP. AREA

From LINAC exit up to **S3** : 4 sous-sections

- LINAC beam matching
 - \circ 4 quadrupoles + One set of X Y steerer
 - 2 EMS + 1 ToF + 1 ACCT-DCCT + 1 ring losses + 1 BLM
- Right-right deflection
 - 2 dipoles + 3 quadrupoles + 1 steerer Y
 - 2 EMS + 1 ring losses + 1 BLM
 - 1 jeu de fentes horizontal
- Ieft-left deflection
 - 2 dipoles + 3 quadrupoles + 1 steerer Y
 - 1 EMS + 1 ring losses + 2 BLM
- Matching to + target room
 - \circ 4 quadrupoles + 2 steerers Y + 1 steerer X
 - 4 EMS + 1 MIGR VE + 2 PFE + 1 Faraday cup

2 target modules (stables or actinides)

FEW WORDS ABOUT S3 EXP. AREA

- > S3 will use heavy ions with A/q=3 at energy from 2MeV/u up to 14.5MeV/u : $0.6Tm < B\rho < 1.65Tm$
- > Beam sizes on targets : $\sigma_{x,y} = 0.5 \times 0.5$ to 2.5mm (Gaussian) or $\sigma_x = 0.5mm$ (Gaussian) $\times \Delta y = 10 mm$
- > Tuning of the primary beam will be very complex, completely linked to the S3 tuning.
- > For super heavy nuclides experiments : Energy of the primary beam will be 5-6MeV/u. But S3 spectrometer need to be tune at 1MeV/u (energy of the products).

MAGNETIC ELEMENTS AND CURRENT ALIMENTATION

- 2 types of quadrupoles :
 - Type 1 (G=13T/m, I_{max} =280A) : N=10
 - Type 2 (G=10T/m, I_{max} =370A) : N=18
- Steerer : B_{max} =245G, I_{max} =10A
 - 5 dedicated to horizontal plane
 - 10 dedicated to vertical plane
- 6 rectangular dipoles : $\theta = 45^{\circ}$, $\rho = 1.5m$
 - B_{max}=1.68T, I_{max}=670A,
 - Gap=80mm, useful zone=60mm
 - Auxiliary coil : I=10A, V=15V
 - Connect to a commutation grid for the alimentation (safety aspects)
 - RMN field measurement of dipole

HEBT BEAM DIAGNOSTICS

Beam profilers (EMS) : formed by 2 grid of wires

- 16 EMS in HEBT and around NFS +S3 targets locations
- 2 types : 1mm step and variable steps between wires, $\phi_{wires} = 70 \mu m$
- Need to use the slow beam chopper of the LEBT in order to modulate the beam intensity with its energy (risk of wires melting)

Beam Loss Monitor (BLM) : 6 systems

- Device to control and monitor the beam losses in the HEBT structures
- locate around 1m to the beam line as clse as possible to the maximum of the transverse beam envelops in HEBT

HEBT BEAM DIAGNOSTICS

Beam energy using Time of Flight technic :

- Located after the LINAC in the matching section
- 2 pick-up devices at around 2m distances
- Use during beam tuning and optimization

Beam current measurement :

- 2 devices :
 - At the beginning of the HEBT
 - At the end of HEBT close to the beam-dump
- Measurement of total and transmission current
- Measurement of beam power $P = I \times E$

Ring losses : DI

- Normal working condition I = 0
- Intercept beam (I > 0) in case of mismatching or misalignment
- 6 DI in HEBT (1 in each sub-sections except matching sections NFS et S3)
- Horizontal and vertical aperture of the ring depend to HEBT implantation
- For 10W losses = 250nA for Deuterons beam at 40MeV
- For $I > I_{threshold}$ on a ring, beam must be switched off

THE SPIRAL2 BEAM-DUMP

- 1) Using : tuning of the LINAC and HEBT, beam qualification at the beginning of experiment, beam retuning during experiment
- 2) Design to stop a Deuterons beam to 40MeV and 5mA (P=200kW)
- 3) Internal part see by the beam optimize to maximize a flat power deposition
- 4) Match a beam to $\sigma_x = \sigma_y = 14mm$ at beam-dump entry
- Segmented collimator located 1m before the bean-dump (4 sectors in Copper). Small halo beam fraction interception for injection optimization of the beam in the beam-dump
- 6) Demineralized water cooling

100nA (4W of intercept D)

THANKS YOU FOR YOUR ATTENTION

