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WHY	USE	DIAGNOSTICS	ON	AN	
ACCELERATOR?	
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How	can	we	know	what	happens	
	inside	the	accelerator?	

•  Just	by	looking	at	the	accelerator	you	can’t	
know	what	is	going	on	inside.	
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How	can	we	know	what	happens	
	inside	the	accelerator?	

•  To	know	what	
happens	inside	
the	accelerator	
we	need	
diagnos)cs.	
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Looking	inside	the	accelerator	
•  Par)cles	are	too	small	to	be	seen	
•  They	are	smaller	than	visible	

photons	
•  Orders	of	magnitude:	

–  Visible	photon:		
~500	nanometre	(5x10-7m)	

–  Proton:		
~0,8	femtometre	(8x10-16m)	
1	billion	)mes	less	than	a	(visible)	
photon!	

–  Electron:	
>	1	aUometre	(10-18m)	
1000	billion	)me	less	than	a	(visible)	
photon!	

•  We	need	to	use	tools	to	«	see	»	what	
happens	inside	the	accelerator.	
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Why	look	inside	the	accelerator?	
•  To	tune	an	accelerator	one	needs:	
–  To	know	what’s	happening	
–  To	know	the	effects	of	the	semngs	applied	

•  Tuning	an	accelerator	without	diagnos)cs	would	
be	like	driving	a	car	with	closed	eyes.	
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HOW	DO	DIAGNOSTICS	ON	
ACCELERATOR	WORK?	
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How	to	look	inside	the	accelerator?	

•  Par)cles	are	too	small	
to	be	seen.	

•  To	see	them	it	is	
necessary	to	use	their	
physical	proper)es:	
– Radia)on	emiUed	by	
par)cles	

–  Interac)on	of	the	
par)cles	with	maUer	
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Radia)on	emiUed		
by	charged	par)cles	

•  Par)cles	accelerated	in	accelerators	are	charged.	
•  Electromagne)sm	laws	indicate	that	when	
accelerated		these	par)cles	will	emit	
electromagne)c	radia)on	(radio	waves,	visible	
light,…).	
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Radia)on	emiUed		
by	charged	par)cles	

•  A	charged	par)cle	is	
surrounded	by	electric	field	
lines.	

•  When	accelerated	these	fields	
lines	will	be	compressed.	
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Radia)on	emiUed		
by	charged	par)cles	

•  Field	lines	of	a	charged	
par)cle	propagetaing	near	
a	conductor		will	induce	a	
current	in	this	conductor.	

•  This	current	can	be	
measured.	

•  The	intensity	of	this	
current	will	depend	on	the	
charge	and	the	posi)on	of	
the	par)cles.	
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Radia)on	emiUed		
by	charged	par)cles	

•  If	a	par)cle	crosses	a	
conductor,	radia)on	is	
emiUed	due	to	the	
change	in	permimvity	as	
the	par)cle	reaches	the	
surface	of	that	
conductor.	
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Interac)ons		
par)cles-maUer	

•  When	a	par)cle	interacts	with	maUer	it	deposits	
energy	as	heat	and	as	photons.	These	photons	can	lead	
to	the	forma)on	of	pairs	of	par)cles-an)par)cles.	This	
will	lead	to	the	forma)on	of	an	electromagne)c	
shower.	
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Interac)ons		
par)cles-maUer	

•  If	the	absorber	(block	of	maUer)	
is	large	enough	to	contain	the	
full	electromagne)c	shower,	the	
number	of	charges	deposited	is	
equal	to	the	charge	of	the	beam.	

•  By	deposi)ng	energy	in	a	
fluorescent	screen	the	par)cles	
will	create	light	emission,	
allowing	to	visualise	the	beam’s	
profile.	
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Shaping	the	signal	

•  Nowadays	almost	all	signals	from	the	
accelerators	are	digi)sed.	
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Shaping	the	signal	

•  To	go	from	the	equipement	where	it	is	produced	
to	the	to	the	computer	where	it	is	digi)sed,	it	has	
to	be	shaped.	

•  In	some	accelerators	the	pulses	have	a	dura)on	
of	only	a	few	picoseconds.	The	shaping	must	
adjust	that	dura)on	to	the	sampling	frequency	of	
the	digi)sers.	
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Indirect	measurements	

•  Some	quan))es	are	not	directly	accessible.	
•  For	example	the	emiUance,	the	machine	
tune…	

•  For	these	quan))es	the	value	can	be	inferred	
from	a	combina)on	of	two	or	more	
measurements	(eg:	beam	size	at	different	
loca)on	for	the	emiUance).	
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Ultra	high	vacuum		

•  Diagnos)cs	used	in	
accelerator	must	be	
compa)ble	with	Ultra	
High	Vacuum.	

•  This	requires	special	
manipulators	for	
anything	that	needs	to	
be	moved	inside	the	
beam	pipe.	
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Electromagne)c	noise	
and	grounding	

•  In	an	accelerator	there	is	a	lot	of	electromagne)c	noise.	
•  This	can	create	fake	signals.	
•  Countermeasures	such	as	detectors	grounding	or	shielding	

must	be	taken.	
•  Grounding	of	detectors	is	also	necessary	to	prevent	

electrosta)c	discharges.	
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Linear	or	circular?	

•  The	type	of	accelerator	will	affect	the	type	of	
detectors	you	can	use.	

•  Intercep)ng	detectors	should	mostly	be	used	
on	linear	accelerators.	In	circular	accelerator	
they	prevent	the	beam	from	circula)ng.	

•  In	circular	accelerators,	the	large	number	of	
turn	allows	the	detec)on	of	weaker	signals	or	
a	beUer	signal	over	noise	ra)o.	
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WHICH	MEASUREMENTS	CAN	BE	
DONE	WITH	BEAM	DIAGNOSTICS?	
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Charge	measurement	

•  Charge	can	be	measured	
two	ways:	
– By	measuring	the	current	
flowing	in	the	beam	pipe	
=>	current	transformer	

– By	measuring	the	current	
deposited	in	a	block	of	
maUer	
=>	Faraday	cup	
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Current	transformer	

•  Current	transformer	will	
measure	the	charge	
flowing	through	a	toroid.	

•  Like	a	current	
transformer!	

•  Several	flavours	exist	
depending	on	the	type	of	
beams	to	be	measured:	
AC,	DC,	short,…	
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AC	Current	transformer	

•  If	the	beam	modula)on	
are	of	the	order	of	ns,	
then	it	will	look	like	an	
AC	current	and	an	ACCT	
will	be	used.	
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DC	Current	transformer	

•  If	the	beam	is	
almost	con)nuous	a	
more	complex	DCCT	
will	be	used.	

•  Here	the	current	
measured	is	the	
current	required	to	
cancel	the	signal	in	
the	two	toroids.	
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Integra)ng	Current	transformer	

•  If	the	beam	pulsed	
are	very	short	
(picoseconds),	it	can’t	
be	recorded	as	is	by	
the	electronic.	

•  An	integra)ng	
current	transformer	
(ICT)	with	large	
capacitance	will	be	
used	to	smooth	the	
pulse.	
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Wall	Current	Monitors	(WCT)	

•  For	fast	
measurements	a	wall	
current	monitor	can	
be	used.	

•  It	consists	of	a	
dielectric	insert		in	
the	beam	pipe	so	that	
the	current	flowing	in	
the	beam	pipe	can	be	
measured	at	one	
loca)on.	
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Quizz	
Charge	transformer	
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•  Which	quan)ty	in	Maxwell’s	equa)on	is	
relevant	for	the	performances	of	charge	
transformers?	



Faraday	cup	

•  Charges	deposited	in	a	
block	of	maUer	will	give	the	
charge	of	the	beam.	

•  At	high	energy	a	Faraday	
cup	can	be	several	metres	
long.	

•  To	avoid	backscaUered	
par)cles	the	cup	can	be	
slightly	biased.	
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Quizz	
Faraday	cup	

•  Es)mate	approximately	the	length	of	a	Faraday	cup	
made	of	Copper	that	must	measure	the	charge	of	a	
100MeV	electron	beam?	

•  How	this	length	changes	if	the	beam	energy	is	1GeV?	
•  How	this	length	changes	if	the	beam	energy	is	100MeV	
and	the	faraday	cup	is	made	of	graphite?	

•  Reminder:	the	minimum	ioniza)on	energy	of	copper	is	
12.57	MeV/cm	and	that	of	graphite	is	3.85MeV/cm	
	(see	
hUps://pdg.lbl.gov/2020/AtomicNuclearProper)es/
index.html	)	
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Answer:	
Faraday	cup	

•  Electrons	will	deposit	12.57	MeV/cm.	
•  100MeV/(12.57MeV/cm)	~	8cm	
•  The	Faraday	cup	must	be	at	least	8	cm.	
•  A	margin	of	at	least	50%	must	be	added	=>	~12cm	
•  Beware	that	some	secondary	par)cles	(neutrons,
…)	may	travel	further	than	that.	

•  1GeV	=>	120cm	
•  Graphite:	100MeV/(3.56MeV/cm)	~26cm		
+50%	=>	39cm.	
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Current	transformers		
vs	Faraday	cup	

•  Current	transformers	are	non	destruc)ve	
measurements.	

•  Faraday	cup	is	destruc)ve.	
•  The	reading	of	a	Faraday	cup	is	more	direct	
than	that	of	a	current	transformer.	

•  The	size	of	a	Faraday	cup	scales	with	the	
energy.	
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Beam	posi)on	measurement	
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Beam	posi)on	measurement	
•  Instead	of	measuring	the	
total	charge	along	one	
sec)on	of	the	beam	pipe,	one	
can	measure	it	several	
electrode	around	the	pipe.	

•  The	charge	on	each	electrode	
will	then	depend	on	the	
distance	of	the	beam	to	that	
electrode.	
=>	Beam	posi)on	monitors	
(BPM)	
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Beam	posi)on	monitors	(BPM)	
•  To	get	the	posi)on	one	need	to	compare	the	signal	of	the	
electrodes	two	by	two.	

•  The	difference	in	signal	between	two	opposite	electrodes	
give	the	posi)on	on	that	axis.	

•  The	sum	of	the	signal	on	the	4	electrodes	is	propor)onal	
to	the	charge.	
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Signal	on	the	electrodes	
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Example	of	measurements	
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Beam	posi)on	monitors	(BPM)	
•  Beam	posi)on	monitoring	is	very	important	in	accelerators	so	

beam	posi)on	monitors	exist	in	many	different	flavours.	
•  Accelerators	can	avec	one	BPM	every	few	meters.	
•  BuUon,	electrodes,…	
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BPM	electronics	
•  The	accuracy	of	the	measured	posi)on	depends	a	
lot	on	the	quality	of	the	electronics.	

•  Noise	can	affect	posi)on	reading.	
=>	very	complicated	(expensive)	electronics		

•  Ac)ve	R&D	on	BPM	electronics…		
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Cavity	Beam	posi)on	monitors	

•  Instead	of	electrodes	of	BPM	can	use	a	pillbox	
cavity.	
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Quizz:	BPM	
•  Using	Maxwell	Gauss	
equa)on	es)mate	the	rela)ve	
field	between	two	opposite	
electrodes	induced	by	a	1nC	
beam	on	4	electrode	located	
on	a	circle	of	diameter	10cm	
around	the	beam.	

•  a)	When	the	beam	is	centred.	
•  B)	When	the	beam	is	offset	by	
1cm	toward	an	electrode.	
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Beam	profile	measurement	

Nicolas	Delerue,	IJCLab	 Introduc)on	to	diagnos)cs	 43	



Beam	profile	measurement	

•  Knowing	the	shape	of	the	beam	is	also	very	
important.	

•  This	can	be	done	by	several	manners:	
– With	a	luminescent	screen	and	a	camera	
– With	a	transi)on	radia)on	screen	and	a	camera	
– With	a	moving	wire	
– With	several	fixed	wires	
– By	looking	at	the	fluorescence	of	a	gas	
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Beam	profile	measurement	
using	luminescent	screens	

•  A	bunch	of	par)cles	crossing	
a	screen	will	deposit	energy.	

•  If	the	material	is	chosen	
correctly	most	of	the	energy	
will	excite	atoms	which	will	in	
turn	emit	light.	

•  This	luminescent	emission	
will	give	indica)on	on	the	
beam	profile.	

•  This	is	a	(par)ally)	destruc)ve	
measurement.		
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Beam	profile	measurement	
using	luminescent	screens	

•  Example	of	luminescent	
materials:	
– YAG:Ce		
– Al2O3	(mostly	used	with	
protons)	

– …	
•  Many	luminescent	
materials	exist	and	some	
new	ones	are	being	studied	
con)nuously.	
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YAG:Ce	
•  YUrium	aluminum	garnet	ac)vated	

by	cerium	is	a	fast	scin)llator	with	
excellent	mechanical	and	chemical	
resistance.		

•  Yield:	3x103	ph/MeV	
•  Density	:	4.57	g/cm3	

•  Minimum	d’ionisa)on:		
2	MeV	cm2/g		
=>	9.2MeV/cm		
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Beam	profile	measurement	
using	luminescent	screens:	camera	

•  A	camera	must	monitor	the	
screen.	

•  This	must	be	a	special	
camera	that	can	be	
triggered	with	a	low	jiUer,	
otherwise	the	beam	will	be	
missed.	
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Example	of	camera	
•  There are many camera 

on the market… 
•  Things to look for: 

–  Triggering 
–  Quantum efficiency 
–  Gain 
–  Pixel size 
–  Readout 
–  … 

Nicolas	Delerue,	IJCLab	 Introduc)on	to	diagnos)cs	 49	



Beam	profile	measurement	
using	luminescent	screens	

•  Beware:	don’t	put	a	camera	
directly	in	the	par)cle	
beam.	

•  Typically	the	screen	is	)lted	
at	45º	and	the	camera	looks	
at	it	from	from	the	side.	

•  In	other	configura)ons	the	
screen	is	at	90º	and	a	
mirror	reflects	the	light	
toward	the	camera.	
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Beam	profile	measurement	
using	luminescent	screens:	

op)cal	func)on	
•  Op)cs	must	be	installed	
between	the	screen	and	the	
camera.	

•  Can	be	simple	lenses	or	more	
advanced	zoom	lenses	
(including	consumer	lenses).		
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Beam	profile	measurement	
using	luminescent	screens:	

op)cal	func)on	
•  Field	of	view	(fov):	size	of	the	object	
(screen)	to	be	imaged.	

•  Working	distance	(WD):	distance	to	
the	screen.	

•  We	have	the	rela)on:	
focal	length	x	FOV	=	sensor	size	x	WD	
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Beam	profile	measurement	
using	luminescent	screens:	

op)cal	func)on	
Example	
•  Typical	sensor	size:	5mm	x5mm	
•  Typical	screen	size	25mm	diameter.	
•  The	lens	must	give	a	factor	5	
demagnifica)on	(sensor	size/FOV).	

•  If	the	screen	is	1m	away	from	the	
lens,	the	focal	length	must	be:	
Focal	length	=	(sensor	size	x	WD)/FOV	
=>	5mm	x	1m/25mm	=	200mm	
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Beam	profile	measurement	
using	luminescent	screens:	

op)cal	func)on	
Lens	mount:	
•  Most	scien)fic	camera	will	have	a	c-
mount.	

•  But	beware	there	are	also	cs-mount	
and	if	you	use	consumer	op)cs	you	
may	have	Canon	EOS,…	

•  This	will	change	the	back	focal	length	
of	the	length	and	hence	you	will	have	
to	apply	a	correc)on	factor	to	the	
focal	length.	
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Beam	profile	measurement	
using	luminescent	screens:	

op)cal	func)on	
Focal	length	correc)on	when	
using	adapter:	
•  Focal	length	scales	with	back	

focal	length.	
•  C=>Cs:	Divide	focal	length	by	

1.4	(17.5mm/12.5mm)	
•  Beware,	op)cal	quality	and	

opera)ng	distance	may	
change	also.	

•  You	can	also	purchase	
specific	adapters	that	fit	
between	the	lens	and	the	
CCD.	
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Beam	profile	measurement	
using	luminescent	screens	

•  The	screen	can’t	be	le{	
permanently	in	the	beam.	

•  UHV	compa)ble	actuators	
must	be	used.	

•  Also,	remember	to	trigger	the	
camera	at	the	right	)me	
otherwise	you	won’t	see	the	
beam.	
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Beam	profile	measurement	
using	luminescent	screens	

•  The	op)cal	func)on	(camera	+	
lens)	must	be	calibrated.	

•  Ideally	the	system	must	have	a	
built-in	target	to	recalibrate	
the	system	from	)me	to	)me.	
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Beam	profile	measurement	
using	transi)on	radia)on	screens	

•  When	charged	par)cles	
travel	across	a	surface	
some	of	the	virtual	photons	
surrounding	them	may	
become	real.	
=>	Transi)on	radia)on.	

•  By	orien)ng	the	screen	at	
45º	the	radia)on	may	be	
observed	with	a	camera.	
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Beam	profile	measurement	
Transi)on	radia)on	vs	luminescence	

•  Loca)on:	
–  Lumin.	happens	in	the	volume	of	the	

screen	
–  TR	happens	at	the	surface.	

•  Direc)onality:	
–  Lumin.	is	emiUed	over	4pi	
–  TR	is	emiUed	in	a	1/gamma	cone	

•  Intensity:	
–  Lumin.	depends	on	screen	thickness	
–  TR	is	1%	of	the	number	of	electrons	

(usually	much	weaker)	
•  Spectrum	

–  Lumin.	peaked	at	some	values	
–  TR	board,	decrasing	at	shorter	

wavelength.	
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Beam	profile	measurement	
Transi)on	radia)on	vs	luminescence	

•  Let’s	assume	a	25mm	wide	screen	with	
thickness	1mm	and	a	109	electrons	beam	at	
100	MeV	(gamma=200).	

•  Lens	at	1m,	aperture	size	50mm	diameter.	
•  TR:	About	107	photons	emiUed	in	a	1/gamma	

cone	of	~5mrad.	All	reach	the	lens.	
•  Lumin.	:	

–  100MeV	=>	minimum	ionising	
–  0.92MeV	of	energy	deposited.	
–  2.7	x	103	photons	emiUed	over	4pi.	
–  Lens	surface:	1962.5mm2	

–  1m	sphere	=	4.2m2	
–  1962.5mm2	/	4.2m2	~4%	
–  1265	photons	per	electrons	captured	by	the	

lens.	
–  1.265	1012	photons	captured	in	total.	
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Beam	profile	
measurement	

using	luminescent	
screens	

•  The	ThomX	
diagnos)cs	
sta)ons.	
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Beam	profile	measurement	
Transi)on	radia)on	vs	luminescence	

Quizz	
•  Same	calcula)on	for	a	109	electrons	

beam	with	250	MeV	energy	a	
0.2mm	thick	YAG:Ce	screen		

•  Let’s	assume	a	20	mm	wide	screen	
with	thickness	0.2	mm	and	a	3x109	
electrons	beam	at	250	MeV.	

•  Lens	at	2m,	aperture	size	40mm	
diameter.	

•  Between	the	lens	and	the	camera	
there	are	two	mirrors	with	90%	
reflec)vity	and	there	is	a	vacuum	
viewport	with	95%	reflec)vity.		

Nicolas	Delerue,	IJCLab	 Introduc)on	to	diagnos)cs	 62	



Beam	profile	measurement	
Wire	scanners	

•  Instead	of	using	a	screen	one	can	
use	a	moving	wire	across	the	beam.	

•  Working	principle:	
–  Either	secondary	par)cles	are	
measured	downstream,	

–  Or	the	current	induced	on	the	wire	is	
measured.	

•  Measurement	is	par)ally	
destruc)ve	but	with	a	thin	enough	
wire	it	can	be	used	on	a	ring.	

•  Beware	of	not	burning	the	wire	
with	a	too	intense	beam.	
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Beam	profile	measurement	
Wire	scanners	

•  Example	of	wire	
scanner	measurements	
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Beam	profile	measurement	
Wire	scanners:	harps	

•  When	the	system	reads	
charges,	instead	of	a	single	
wire,	one	can	use	a	harp	
with	several	wires	
(including	crossed	wires).	
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Beam	profile	measurement	
Laser-wire	

•  The	wire	can	also	be	replaced	by	a	laser	beam.	
•  Compton	scaUering	with	electrons	
•  Stripping	with	nega)ve	ions…	
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Control	system:	
TANGO	and	EPICS	

•  As	beam	diagnos)cs	and	accelerators	in	
general	use	a	large	variety	of	devices,	it	is	
necessary	to	unify	the	control	systems	for	the	
operator	(and	the	developers).	

•  Several	control	system	architectures	exist.	
•  Two	of	the	most	commons	are	TANGO	and	
EPICS.	

•  See	talk	on	TANGO.		
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Real	cases	of	diagnos)cs:	
ThomX	

(see	separate	talk)	
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Thank	you	
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